期刊文献+
共找到27,004篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
1
作者 申瑾 赵建东 +2 位作者 刘华清 姜锐 余智鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期291-301,共11页
With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi... With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion. 展开更多
关键词 heterogeneous traffic flow CAV linear stability nonlinear stability energy consumption
下载PDF
Exploring the impact of economic growth and energy consumption on SO_(2) emissions in China based on the Environmental Kuznets Curve hypothesis
2
作者 Bing-Jie Xu Yi-Fei Shen +1 位作者 Hui Qiao Zhi Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2892-2900,共9页
This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China... This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development. 展开更多
关键词 SO_(2)emissions Economic growth energy consumption EKC China
下载PDF
Joint Optimization of Energy Consumption and Network Latency in Blockchain-Enabled Fog Computing Networks
3
作者 Huang Xiaoge Yin Hongbo +3 位作者 Cao Bin Wang Yongsheng Chen Qianbin Zhang Jie 《China Communications》 SCIE CSCD 2024年第4期104-119,共16页
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap... Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature. 展开更多
关键词 blockchain energy consumption fog computing network Internet of Things LATENCY
下载PDF
A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption
4
作者 Wentao Li Jiantao Liu +3 位作者 Yudun Li GuoxinMing Kaifeng Zhang Kun Yuan 《Energy Engineering》 EI 2024年第9期2479-2503,共25页
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener... With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid. 展开更多
关键词 Renewable energy consumption active power optimization power grid partitioning industrial flexible loads line over-limit
下载PDF
Optimising Energy Consumption in SD-DCN Networks (Software Defined-Data Center Network)
5
作者 Narcisse Tahi Etienne Soro +1 位作者 Pacôme Brou Olivier Asseu 《Open Journal of Applied Sciences》 2024年第8期2223-2235,共13页
Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networ... Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networking (SDN), which is an emerging technique that separates the control plane and the data plane of the deployed network, enabling centralized control of the network, while offering flexibility in data center network management. Some research work is moving in the direction of optimizing the energy consumption of SD-DCN, but still does not guarantee good performance and quality of service for SDN networks. To solve this problem, we propose a new mathematical model based on the principle of combinatorial optimization to dynamically solve the problem of activating and deactivating switches and unused links that consume energy in SDN networks while guaranteeing quality of service (QoS) and ensuring load balancing in the network. 展开更多
关键词 DCN Optimisation energy consumption QOS SDN
下载PDF
Comparative Study on Energy Consumption Structure of Ordinary Rural Households and Rural Tourism Households in Zhejiang Province, China 被引量:1
6
作者 Bingxin Fan Wenxuan Li +2 位作者 Zilu Yin Meiyan Wang Chen Chen 《Energy and Power Engineering》 CAS 2023年第1期52-72,共21页
With the rapid development of rural tourism in China, more and more rural households operate a rural tourism business. The purpose of this study is to understand the energy consumption characteristic of ordinary rural... With the rapid development of rural tourism in China, more and more rural households operate a rural tourism business. The purpose of this study is to understand the energy consumption characteristic of ordinary rural households (ORHs) and rural tourism households (RTHs) in the mountainous area and islands area in Zhejiang province. 225 households were surveyed, including 185 ORHs and 40 RTHs, based on a field survey in Quzhou (mountainous area) and Zhoushan (islands area). Results reveal that energy consumption of ORHs is low, but energy comsumption of RTHs is high, about 3 to 5 times higher than that of ORHs. Given the results, the government and RTHs should pay more attention to take measures to reduce energy comsumption. Meanwhile, the factors affecting households’ energy consumption are also analyzed. Energy consumption of ORHs is affected by frequently used area, family income level and permanent population. Then energy consumption of RTHs is mainly related to the total building area, number of air conditioner (AC), number of guestrooms and family income level. 展开更多
关键词 Rural Tourism Ordinary Rural Households Rural Tourism Households energy consumption energy Structure
下载PDF
Distributed Multi-hop Clustering Approach with Low Energy Consumption in WSN 被引量:1
7
作者 R.Nithya Roobaea Alroobaea +1 位作者 Ahmed Binmahfoudh Zairi Ismael Rizman 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期903-924,共22页
The purpose of sensing the environment and geographical positions,device monitoring,and information gathering are accomplished using Wireless Sensor Network(WSN),which is a non-dependent device consisting of a distinc... The purpose of sensing the environment and geographical positions,device monitoring,and information gathering are accomplished using Wireless Sensor Network(WSN),which is a non-dependent device consisting of a distinct collection of Sensor Node(SN).Thus,a clustering based on Energy Efficient(EE),one of the most crucial processes performed in WSN with distinct environments,is utilized.In order to efficiently manage energy allocation during sensing and communication,the present research on managing energy efficiency is performed on the basis of distributed algorithm.Multiples of EE methods were incapable of supporting EE routing with MIN-EC in WSN in spite of the focus of EE methods on energy harvesting and minimum Energy Consumption(EC).The three stages of performance are proposed in this research work.At the outset,during routing and Route Searching Time(RST)with fluctuating node density and PKTs,EC is reduced by the Hybrid Energy-based Multi-User Routing(HEMUR)model proposed in this work.Energy efficiency and an ideal route for various SNs with distinct PKTs in WSN are obtained by this model.By utilizing the Approximation Algorithm(AA),the Bregman Tensor Approximation Clustering(BTAC)is applied to improve the Route Path Selection(RPS)efficiency for Data Packet Transmission(DPT)at the Sink Node(SkN).The enhanced Network Throughput Rate(NTR)and low DPT Delay are provided by BTAC.To MAX the Clustering Efficiency(CE)and minimize the EC,the Energy Effective Distributed Multi-hop Clustering(GISEDC)method based on Generalized Iterative Scaling is implemented.The Multi-User Routing(MUR)is used by the HEMUR model to enhance the EC by 20%during routing.When compared with other advanced techniques,the Average Energy Per Packet(AEPP)is enhanced by 39%with the application of proportional fairness with Boltzmann Distribution(BD).The Gaussian Fast Linear Combinations(GFLC)with AA are applied by BTAC method with an enhanced Communication Overhead(COH)for an increase in performance by 19%and minimize the DPT delay by 23%.When compared with the rest of the advanced techniques,CE is enhanced by 8%and EC by 27%with the application of GISEDC method. 展开更多
关键词 Sensor node CLUSTERING ROUTING energy consumption multi-path routing
下载PDF
Reducing Electrical Consumption in Stationary Long-Haul Trucks
8
作者 Kajal Sheth Dhvanil Patel Gautam Swami 《Open Journal of Energy Efficiency》 2024年第3期88-99,共12页
On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate th... On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems. 展开更多
关键词 Long-Haul Trucks Electricity consumption Idling Reduction HVAC Systems Climate Control energy Efficiency
下载PDF
Does economic growth stimulate energy consumption?New evidence from national and regional levels in China
9
作者 Defu Zhao Jiahai Yuan +4 位作者 Shan Fu Yan Song Yuan Wang Yanyan Liu Jian Zhang 《Chinese Journal of Population,Resources and Environment》 2023年第2期60-70,共11页
A detailed investigation of the nexus between economic growth and energy use is imperative for formulating sustainable development policies.In this study,we examine panel cointegration and causality relations among ec... A detailed investigation of the nexus between economic growth and energy use is imperative for formulating sustainable development policies.In this study,we examine panel cointegration and causality relations among economic growth,energy use,capital stock,and labor in 30 Chinese provinces between 2000-2019.We conduct a comprehensive empirical analysis based on panel modeling and a neoclassical production function.The findings of the second-generation panel unit root and co-integration tests reveal that these variables have long term co-integration linkages.We then perform a panel cointegration estimation using the fully modified ordinary least squares technique and find that total energy consumption,electricity consumption,capital stock,and labor significantly influence economic growth at the national and regional levels in China.Moreover,the outcomes of the Dumitrescu-Hurlin causality test indicate the existence of a two-way causal nexus between economic output and total energy consumption at the national level,but only a causal link from GDP to total energy use in the eastern and central regions.Conversely,a causality from total energy use to economic output is identified in the western region.Finally,we provide policy implications for the sustainable development of both energy and the economy at the national and regional levels. 展开更多
关键词 Economic growth energy consumption Electricity consumption Panel causality China
下载PDF
Intelligent Energy Consumption For Smart Homes Using Fused Machine-Learning Technique
10
作者 Hanadi AlZaabi Khaled Shaalan +5 位作者 Taher M.Ghazal Muhammad A.Khan Sagheer Abbas Beenu Mago Mohsen A.A.Tomh Munir Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第1期2261-2278,共18页
Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structure... Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individuals quickly improve their way of life depending on current innovations.However,there is a shortage of energy,as the energy required is higher than that produced.Many new plans are being designed to meet the consumer’s energy requirements.In many regions,energy utilization in the housing area is 30%–40%.The growth of smart homes has raised the requirement for intelligence in applications such as asset management,energy-efficient automation,security,and healthcare monitoring to learn about residents’actions and forecast their future demands.To overcome the challenges of energy consumption optimization,in this study,we apply an energy management technique.Data fusion has recently attracted much energy efficiency in buildings,where numerous types of information are processed.The proposed research developed a data fusion model to predict energy consumption for accuracy and miss rate.The results of the proposed approach are compared with those of the previously published techniques and found that the prediction accuracy of the proposed method is 92%,which is higher than the previously published approaches. 展开更多
关键词 energy consumption INTELLIGENT machine learning TECHNIQUE smart homes PREDICTION
下载PDF
Residential Energy Consumption Forecasting Based on Federated Reinforcement Learning with Data Privacy Protection
11
作者 You Lu Linqian Cui +2 位作者 YunzheWang Jiacheng Sun Lanhui Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期717-732,共16页
Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regul... Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regulationson data security and privacy have been enacted, making it difficult to centralize data, which can lead to a datasilo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework.However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg)method is used to directly weight the model parameters on average, which may have an adverse effect on te model.Therefore, we propose the Federated Reinforcement Learning (FedRL) model, which consists of multiple userscollaboratively training the model. Each household trains a local model on local data. These local data neverleave the local area, and only the encrypted parameters are uploaded to the central server to participate in thesecure aggregation of the global model. We improve FedAvg by incorporating a Q-learning algorithm to assignweights to each locally uploaded local model. And the model has improved predictive performance. We validatethe performance of the FedRL model by testing it on a real-world dataset and compare the experimental results withother models. The performance of our proposed method in most of the evaluation metrics is improved comparedto both the centralized and distributed models. 展开更多
关键词 energy consumption forecasting federated learning data privacy protection Q-LEARNING
下载PDF
Research on the energy consumption mechanism and characteristics of the gallium indium tin liquid metal arcing process
12
作者 马亚光 高国强 +7 位作者 向宇 彭伟 董克亮 钱鹏宇 游炳妍 杨泽锋 魏文赋 吴广宁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第9期104-113,共10页
For high-voltage direct current(HVDC)power grid transmission with higher voltages,the energyconsuming branch of the DC circuit breaker is required to dissipate huge energies of more than megajoules in a short time in ... For high-voltage direct current(HVDC)power grid transmission with higher voltages,the energyconsuming branch of the DC circuit breaker is required to dissipate huge energies of more than megajoules in a short time in the case of a fault and short circuit.The requirements for huge volume and weight are difficult to meet with energy-consuming equipment based on ZnO.In this paper,a new energy consumption method is proposed based on gallium indium tin(GaInSn)liquid metal in the arcing process,and a test platform with adjustable short-circuit current is built.The mechanism triggering GaInSn liquid metal arcing energy consumption is studied.It is found that short-circuit current and channel aperture are the key parameters affecting the energy consumption of liquid metal arcing.The characteristics of GaInSn liquid metal energy consumption are investigated,and four stages of liquid metal energy consumption are found:oscillatory shrinkage,arc breakdown,arc burning phase change and arc extinction.The influence of short-circuit current and channel aperture on the energy consumption characteristics of GaInSn liquid metal is investigated.To further explore the physical mechanism of the above phenomena,a magneto-hydrodynamic model of energy consumption in the GaInSn liquid metal arcing process is established.The influence of short-circuit current and channel aperture on the temperature distribution of the liquid metal arc is analyzed.The mechanism of the effect of short-circuit current and channel aperture on peak arc temperature and the temperature diffusion rate is clarified.The research results provide theoretical support for this new liquid metal energy consumption mode DC circuit breaker. 展开更多
关键词 GaInSn liquid metal trigger mechanism oscillatory shrinkage arcing energy consumption temperature diffusion
下载PDF
Economic feasibility and efficiency enhancement approaches for in situ upgrading of low-maturity organic-rich shale from an energy consumption ratio perspective
13
作者 LU Shuangfang WANG Jun +5 位作者 LI Wenbiao CAO Yixin CHEN Fangwen LI Jijun XUE Haitao WANG Min 《地学前缘》 EI CAS CSCD 北大核心 2023年第1期281-295,共15页
The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required ... The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost. 展开更多
关键词 shale gas content in situ upgrading energy consumption ratio high-efficiency heating efficient organic matter transformation
下载PDF
Deep Learning Based Energy Consumption Prediction on Internet of Things Environment
14
作者 S.Balaji S.Karthik 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期727-743,共17页
The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the... The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption;this is because EC is intimately tied to other forms of energy,such as oil and natural gas.For the purpose of determining and bettering overall energy consumption,there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things(IoT).Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable,and it has proven to be an effective tool for solving a number of issues that are associated with the use of energy.The use of soft computing for energy prediction is an essential part of the solution to these kinds of challenges.This study presents an improved version of the Harris Hawks Optimization model by combining it with the IHHODL-ECP algorithm for use in Internet of Things settings.The IHHODL-ECP model that has been supplied acts as a useful instrument for the prediction of integrated energy consumption.In order for the raw electrical data to be compatible with the subsequent processing in the IHHODL-ECP model,it is necessary to perform a preprocessing step.The technique of prediction uses a combination of three different kinds of deep learning models,namely DNN,GRU,and DBN.In addition to this,the IHHO algorithm is used as a technique for making adjustments to the hyperparameters.The experimental result analysis of the IHHODL-ECP model is carried out under a variety of different aspects,and the comparison inquiry highlighted the advantages of the IHHODL-ECP model over other present approaches.According to the findings of the experiments conducted with an hourly time resolution,the IHHODL-ECP model obtained a MAPE value of 33.85,which was lower than those produced by the LR,LSTM,and CNN-LSTM models,which had MAPE values of 83.22,44.57,and 34.62 respectively.These findings provided evidence of the IHHODL-ECP model’s improved ability to provide accurate forecasts. 展开更多
关键词 energy consumption forecasting models deep learning fusion models IoT environment gated recurrent unit artificial intelligence
下载PDF
Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm
15
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +1 位作者 Amel Ali Alhussan Marwa M.Eid 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2117-2132,共16页
The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in ma... The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in machine learning and predictive models.This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory(LSTM)units.The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy.This optimization algorithm is based on the recently emerged dipper-throated optimization(DTO)and stochastic fractal search(SFS)algo-rithm and is referred to as dynamic DTOSFS.To prove the effectiveness and superiority of the proposed approach,five standard benchmark algorithms,namely,stochastic fractal search(SFS),dipper throated optimization(DTO),whale optimization algorithm(WOA),particle swarm optimization(PSO),and grey wolf optimization(GWO),are used to optimize the parameters of the LSTM-based model,and the results are compared with that of the proposed approach.Experimental results show that the proposed DDTOSFS+LSTM can accurately forecast the energy consumption with root mean square error RMSE of 0.00013,which is the best among the recorded results of the other methods.In addition,statistical experiments are conducted to prove the statistical difference of the proposed model.The results of these tests confirmed the expected outcomes. 展开更多
关键词 Stochastic fractal search dipper throated optimization energy consumption long short-term memory prediction models
下载PDF
Optimization of Electricity Purchase and Sales Strategies of Electricity Retailers under the Condition of Limited Clean Energy Consumption
16
作者 Peng Liao Hanlin Liu +1 位作者 Yingjie Wang Neng Liao 《Energy Engineering》 EI 2023年第3期701-714,共14页
In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it ... In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it has caused a certain waste of clean energy power generation resources.Regarding the purchase and sale of electricity by electricity retailers under the condition of limited clean energy consumption,this paper establishes a quantitative model of clean energy restricted electricity fromthe perspective of power system supply and demand balance.Then it analyzes the source-charge dual uncertain factors in the electricity retailer purchasing and selling scenarios in the mid-to long-term electricity market and the day-ahead market.Through the multi-scenario analysis method,the uncertain clean energy consumption and the user’s power demand are combined to form the electricity retailer’s electricity purchase and sales scene,and the typical scene is obtained by using the hierarchical clustering algorithm.This paper establishes a electricity retailer’s risk decisionmodel for purchasing and selling electricity in themid-and long-term market and reduce-abandonment market,and takes the maximum profit expectation of the electricity retailer frompurchasing and selling electricity as the objective function.At the same time,in themediumand longterm electricity market and the day-ahead market,the electricity retailer’s purchase cost,electricity sales income,deviation assessment cost and electricity purchase and sale risk are considered.The molecular results show that electricity retailers can obtain considerable profits in the reduce-abandonment market by optimizing their own electricity purchase and sales strategies,on the premise of balancing profits and risks. 展开更多
关键词 Electricity retailer electricity purchase and sale strategy clean energy consumption
下载PDF
A hybrid agent⁃based machine learning method for human⁃centred energy consumption prediction
17
作者 Qingyao Qiao 《建筑节能(中英文)》 CAS 2023年第3期41-41,共1页
Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management syst... Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management systems or restrictions due to privacy policies),the availability of occupational data has long been an obstacle that hinders the performance of machine learning algorithms in predicting building energy consumption.Therefore,this study proposed an agent⁃based machine learning model whereby agent⁃based modelling was employed to generate simulated occupational data as input features for machine learning algorithms for building energy consumption prediction.Boruta feature selection was also introduced in this study to select all relevant features.The results indicated that the performances of machine learning algorithms in predicting building energy consumption were significantly improved when using simulated occupational data,with even greater improvements after conducting Boruta feature selection. 展开更多
关键词 Building energy consumption PREDICTION Machine learning Agent⁃based modelling Occupant behaviour
下载PDF
Energy Consumption Analysis and Optimization of Electric Submersible Pump System
18
作者 Lingyu Li 《Engineering(科研)》 CAS 2023年第5期269-274,共6页
Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the... Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits. 展开更多
关键词 Offshore Oil Fields Electric Submersible Pumps System energy Consump-tion System Efficiency energy Conservation and consumption Reduction
下载PDF
Optimization of Chiller Loading Problem Using Improved Golden Jackal Optimization Algorithm Leads to Reduction in Energy Consumption
19
作者 Na Dong Xiao Yang Nasser Yousefi 《Energy Engineering》 EI 2023年第11期2565-2583,共19页
This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,s... This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,such as numerical visualization,local field method,competitive selectionmethod,and iterative strategy.The IGJO algorithm is used to improve the research capabilities of the algorithm in terms of global tuning and rotation speed.In order to fully utilize the effectiveness of the proposed algorithm,three famous examples of OCL problems in basic ventilation systems were studied and compared with some previously published works.The results show that the IGJO algorithm can find solutions equal to or better than other methods.Underpinning these studies is the need to reduce energy consumption in air conditioning systems,which is a critical business and environmental decision.The Optimal Chiller Load(OCL)problem is well-known in the industry.It is the best method of operation for the refrigeration plant to satisfy the requirement of cooling.In order to solve the OCL problem,an improved Golden Jackal optimization algorithm(IGJO)was proposed.The IGJO algorithm consists of a number of parts to improve the global optimization and rotation speed.These studies are intended to address more effectively the issue of OCL,which results in energy savings in air-conditioning systems.The performance of the proposed IGJO algorithm is evaluated,and the results are compared with the results of three known OCL problems in the ventilation system.The results indicate that the IGJO method has the same or better optimization ability as other methods and can improve the energy efficiency of the system’s cold air. 展开更多
关键词 Optimal chiller loading improved version of golden jackal optimization energy consumption
下载PDF
Energy Consumption Analysis and Characterization of Aerospace Manufacturing Facilities in the United States–A Step towards Sustainable Development
20
作者 Khaled Bawaneh Bradley Deken Amin Esmaeili 《Energy Engineering》 EI 2023年第1期23-34,共12页
In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilit... In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilities of varying sizes.First,public sources were identified and the data from these previously published sources were aggregated to determine the energy usage of aerospace manufacturing facilities within the U.S.From this dataset,a sample of 28 buildings were selected and the energy intensity for each building was estimated from the data.Next,as a part of this study the energy data for three additional aerospace manufacturing facilities in the U.S.were collected firsthand.That data was analyzed and the energy intensity(kWh/m2)for each facility was calculated and then compared with the energy intensities of the 28 buildings from the sample.Three different indicators of energy consumption in aerospace manufacturing facilities were used as comparators to assist facility managers with determining potential energy savings and help in the decision-making process.On average,aerospace manufacturing facilities in the United States spent 4 cents for each dollar of sale on energy.The energy intensity(kWh/m2)and the power intensity(W/m2)for each facility were calculated based on the actual facility energy bills.The power intensity for these facilities ranges from 34 to 134 W/m2.The energy intensity ranged from 232 to 949 kWh/m2.We found that the power intensity could be used to estimate energy consumption when the annual operating hours of the facility are considered.and to estimate the energy-related carbon dioxide emissions. 展开更多
关键词 Aerospace facilities energy consumption life cycle information in aerospace manufacturing buildings sustainable manufacturing buildings
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部