期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Energy consumption hierarchical analysis based on interpretative structural model for ethylene production
1
作者 韩永明 耿志强 +1 位作者 朱群雄 林晓勇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2029-2036,共8页
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str... Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production. 展开更多
关键词 Partial correlation coefficient Interpretative structural model energy consumption Hierarchical analysis Ethylene production Chemical processes
下载PDF
An input-output model for energy accounting and analysis of industrial production processes: a case study of an integrated steel plant 被引量:1
2
作者 Xiao-jun Liu Sheng-ming Liao +1 位作者 Zheng-hua Rao Gang Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第5期524-538,共15页
To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input-output (IO) model was developed ... To promote sustainability, it has become increasingly vital to properly account material and energy flows in industrial production processes. Therefore, a generic process-level input-output (IO) model was developed to provide an integrated energy (material) accounting and analysis approach for industrial production processes. By extending the existing processlevel IO models, the production, usage, export and loss of by-products were explicitly considered in the proposed IO model. Moreover, the by-products allocation procedures were incorporated into the proposed IO model to reflect individual contributions of products to energy consumption. Finally, the proposed model enabled calculating embodied energy of main products and total energy consumption under hierarchical accounting scope. Plant managers, energy management consultants, governmental officials and academic researchers could use this input-output model to account material and energy flows, thus calculating energy consumption indicators of a production process with their specific system boundary requirements. The accounting results could be further used for energy labeling, identifying bottlenecks of production activities, evaluating industrial symbiosis effects, improving materials and energy utilization efficiency, etc. The model could also be used as a planning tool to determine the effect that a particular change of technology and supply chains may have on the industrial production processes. The proposed model was tested and applied in a real integrated steel mill, which also provided the reference results for related researches. At last, some concepts, computational issues and limi- tations of the proposed model were discussed. 展开更多
关键词 Input-output model · energy consumption · energy accounting · Embodied energy · Industrial production process · Integrated steelmaking process
原文传递
The MIP Technology and Its Commercial Application
3
作者 Cheng Congli Xu Youhao (Research Institute of Petroleum Processing, Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第1期1-5,共5页
This article introduces the specifics of the MIP technology involving respectively the case for production of clean gasoline, the case for producing clean gasoline coupled with production of diesel and the case for pr... This article introduces the specifics of the MIP technology involving respectively the case for production of clean gasoline, the case for producing clean gasoline coupled with production of diesel and the case for producing gasoline with increased output of propylene. The performance of the MIP units that were in operation was wrapped up. Test results have shown that the MIP technology is characterized by improved product distribution as evidenced by the reduced yields of dry gas and slurry and the increased total liquid yield; the upgraded product quality as evidenced by the reduced olefin and sulphur contents in gasoline; and the more ideal techno-economic indicators as evidenced by the reduced unit consumption of catalyst and the reduced energy consumption of the process unit. 展开更多
关键词 MIP OLEFIN sulfur content product distribution unit consumption ofcatalyst energy consumption of process unit
下载PDF
A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge 被引量:9
4
作者 Bin Dong Peng Gao +3 位作者 Dong Zhang Yinguang Chen Lingling Dai Xiaohu Dai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期159-168,共10页
As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion... As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane,most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60 min can achieve the maximal hydrolyzation. Further, effects of different initial p Hs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial p H 9.0with fermentation time of 6 d, the production of which was 348.63 mg COD/g VSS(6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally,the effect of this low energy consumption pretreatment on methane generation was investigated. 展开更多
关键词 Low energy consumption process Short-chain fatty acids Waste activated sludge Methane generation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部