This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China...This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.展开更多
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap...Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.展开更多
With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi...With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion.展开更多
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ...Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.展开更多
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener...With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.展开更多
Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networ...Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networking (SDN), which is an emerging technique that separates the control plane and the data plane of the deployed network, enabling centralized control of the network, while offering flexibility in data center network management. Some research work is moving in the direction of optimizing the energy consumption of SD-DCN, but still does not guarantee good performance and quality of service for SDN networks. To solve this problem, we propose a new mathematical model based on the principle of combinatorial optimization to dynamically solve the problem of activating and deactivating switches and unused links that consume energy in SDN networks while guaranteeing quality of service (QoS) and ensuring load balancing in the network.展开更多
This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW ph...This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW photovoltaic solar panels, a converter, and storage batteries as the proposed sources. The main objective of this study is to conduct a detailed analysis and optimization of a hybrid diesel and renewable energy system to meet the electricity demand of a remote area village of 800 to 1500 inhabitants located in the north of Ngazidja Island in Comoros. The study uses the Hybrid Optimization Model for Electric Renewable (HOMER) Pro to conduct simulations and optimize the analysis using meteorological data from Comoros. The results show that hybrid combination is more profitable in terms of margin on economic cost with a less expensive investment. With a diesel cost of $1/L, an average wind speed of 5.09 m/s and a solar irradiation value of 6.14 kWh/m<sup>2</sup>/day, the system works well with a proportion of renewable energy production of 99.44% with an emission quantity of 1311.407 kg/year. 99.2% of the production comes from renewable sources with an estimated energy surplus of 2,125,344 kWh/year with the cost of electricity (COE) estimated at $0.18/kWh, presenting a cost-effective alternative compared to current market rates. These results present better optimization of the used hybrid energy system, satisfying energy demand and reducing the environmental impact.展开更多
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha...Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power cons...The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.展开更多
In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaini...In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.展开更多
A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building...A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.展开更多
Changing behaviours and attitudes towards more sustainable individual energy consum- ption is a difficult topic to address. After identifying the most recurrent factors influencing bad energy consum- ption-society's ...Changing behaviours and attitudes towards more sustainable individual energy consum- ption is a difficult topic to address. After identifying the most recurrent factors influencing bad energy consum- ption-society's environmental short- sightedness, a lack of individual responsibility and a tendency to put responsibility upon firms, institutions, and governments, the authors evaluated the effect business practices can have on individual behaviour. By qualifying as highly credible sources of information, positioning themselves as examples to follow and providing its employees with the necessary smart, innovative technology, business communities can have a major impact on changing individual behaviours towards more sustainable energy consumption.展开更多
Application of improper methods on rice processing affects rice quality and head rice recovery. In Vietnam, paddy with different moisture contents (from 13% to 17%) is dehusked by both rubber roll and stone disk. Th...Application of improper methods on rice processing affects rice quality and head rice recovery. In Vietnam, paddy with different moisture contents (from 13% to 17%) is dehusked by both rubber roll and stone disk. Thus, objective of this research was to evaluate the technical and economic aspects of the two methods. Optimization was conducted with 20 experiments for input factors (moisture content) and output factors (head brown rice recovery, specific energy consumption). Besides, other factors were also monitored, such as the gap between the two disks, speed of disk and roll, and pressure of rubber roll on paddy. Test results showed that the maximum value of head brown rice (77.4%) and the minimum value of specific energy consumption (0.66 kWh/ton) corresponding to moisture content of paddy of 13.7% for stone disk dehusker. At similar moisture content (13.7%), head brown rice recovery and specific energy consumption were 77.2% and 1.04 kWh/ton for rubber roll dehusker, respectively. As the result, specific energy consumption of rubber roll dehusker was higher than that of stone disk dehusker, corresponding to the higher dehusking efficiency.展开更多
With a growing consumer market of battery electric vehicles, customers' demand for technology and features is on the rise. The range and, to a certain extent, the range estimation will play a key factor in customers...With a growing consumer market of battery electric vehicles, customers' demand for technology and features is on the rise. The range and, to a certain extent, the range estimation will play a key factor in customers' purchase decisions. In order to guarantee a precise range estimation over the usage life of battery electric vehicles, a method is presented that combines adaptive filter algorithms with statistical approaches. The statistical approach uses recurring driving cycles over the lifetime in order to derive the aging status of the traction battery. It is implied that the variance of the energy usage of these driving cycles is within certain bounds. This fact should be proven by an experimental case study. The dataset used in this paper is open to the public.展开更多
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter spli...In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.展开更多
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
China's energy consumption experienced rapid growth over the past three decades, raising great concerns for the future adjustment of China's energy consumption structure. This paper first presents the historical evi...China's energy consumption experienced rapid growth over the past three decades, raising great concerns for the future adjustment of China's energy consumption structure. This paper first presents the historical evidence on China's energy consumption by the fuel types and sectors. Then, by establishing a bottom-up accounting framework and using long-range energy alternatives plan- ning energy modeling tool, the future of China's energy consumption structure under three scenarios is forecast. According to the estimates, China's total energy con- sumption will increase from 3014 million tonnes oil equivalent (Mtoe) in 2015 to 4470 Mtoe in 2040 under the current policies scenario, 4040 Mtoe in 2040 under the moderate policies scenario and 3320 Mtoe in 2040 under the strong policies scenario, respectively, lower than those of the IEA's estimations. In addition, the clean fuels (gas, nuclear and renewables) could be an effective alternative to the conventional fossil fuels (coal and oil) and offer much more potential. Furthermore, the industry sector has much strong reduction potentials than the other sectors. Finally, this paper suggests that the Chinese government should incorporate consideration of adjustment of the energy consumption structure into existing energy policies and measures in the future.展开更多
文摘This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62371082 and 62001076in part by the National Key R&D Program of China under Grant 2021YFB1714100in part by the Natural Science Foundation of Chongqing under Grant CSTB2023NSCQ-MSX0726 and cstc2020jcyjmsxmX0878.
文摘Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.
基金Project supported by the Fundamental Research Funds for Central Universities,China(Grant No.2022YJS065)the National Natural Science Foundation of China(Grant Nos.72288101 and 72371019).
文摘With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion.
基金funded in part by the Advanced Research Projects AgencyEnergy (ARPA-E), U.S. Department of Energy, under award number DE-AR0001471。
文摘Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.
基金supported by State Grid Corporation of China Project“Research and Application of Key Technologies for Active Power Control in Regional Power Grid with High Penetration of Distributed Renewable Generation”(5108-202316044A-1-1-ZN).
文摘With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.
文摘Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networking (SDN), which is an emerging technique that separates the control plane and the data plane of the deployed network, enabling centralized control of the network, while offering flexibility in data center network management. Some research work is moving in the direction of optimizing the energy consumption of SD-DCN, but still does not guarantee good performance and quality of service for SDN networks. To solve this problem, we propose a new mathematical model based on the principle of combinatorial optimization to dynamically solve the problem of activating and deactivating switches and unused links that consume energy in SDN networks while guaranteeing quality of service (QoS) and ensuring load balancing in the network.
文摘This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW photovoltaic solar panels, a converter, and storage batteries as the proposed sources. The main objective of this study is to conduct a detailed analysis and optimization of a hybrid diesel and renewable energy system to meet the electricity demand of a remote area village of 800 to 1500 inhabitants located in the north of Ngazidja Island in Comoros. The study uses the Hybrid Optimization Model for Electric Renewable (HOMER) Pro to conduct simulations and optimize the analysis using meteorological data from Comoros. The results show that hybrid combination is more profitable in terms of margin on economic cost with a less expensive investment. With a diesel cost of $1/L, an average wind speed of 5.09 m/s and a solar irradiation value of 6.14 kWh/m<sup>2</sup>/day, the system works well with a proportion of renewable energy production of 99.44% with an emission quantity of 1311.407 kg/year. 99.2% of the production comes from renewable sources with an estimated energy surplus of 2,125,344 kWh/year with the cost of electricity (COE) estimated at $0.18/kWh, presenting a cost-effective alternative compared to current market rates. These results present better optimization of the used hybrid energy system, satisfying energy demand and reducing the environmental impact.
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
基金supported by the National Natural Science Foundation of China(No.52373280,52177014,51977009,52273257)。
文摘Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
基金supported by the National Natural Science Foundation of China under grant U22A2003 and 62271515Shenzhen Science and Technology Program under grant ZDSYS20210623091807023supported by the National Natural Science Foundation of China under Grant 62301300.
文摘The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.
基金supported in part by the Natural Science Foundation of China(NSFC)under Grant 61971102in part by the Key Research and Development Program of Zhejiang Province under Grant 2022C01093.
文摘In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.
基金The National Natural Science Foundation of China(No. 51036001 )the Natural Science Foundation of Jiangsu Province(No. BK2010043)
文摘A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.
文摘Changing behaviours and attitudes towards more sustainable individual energy consum- ption is a difficult topic to address. After identifying the most recurrent factors influencing bad energy consum- ption-society's environmental short- sightedness, a lack of individual responsibility and a tendency to put responsibility upon firms, institutions, and governments, the authors evaluated the effect business practices can have on individual behaviour. By qualifying as highly credible sources of information, positioning themselves as examples to follow and providing its employees with the necessary smart, innovative technology, business communities can have a major impact on changing individual behaviours towards more sustainable energy consumption.
文摘Application of improper methods on rice processing affects rice quality and head rice recovery. In Vietnam, paddy with different moisture contents (from 13% to 17%) is dehusked by both rubber roll and stone disk. Thus, objective of this research was to evaluate the technical and economic aspects of the two methods. Optimization was conducted with 20 experiments for input factors (moisture content) and output factors (head brown rice recovery, specific energy consumption). Besides, other factors were also monitored, such as the gap between the two disks, speed of disk and roll, and pressure of rubber roll on paddy. Test results showed that the maximum value of head brown rice (77.4%) and the minimum value of specific energy consumption (0.66 kWh/ton) corresponding to moisture content of paddy of 13.7% for stone disk dehusker. At similar moisture content (13.7%), head brown rice recovery and specific energy consumption were 77.2% and 1.04 kWh/ton for rubber roll dehusker, respectively. As the result, specific energy consumption of rubber roll dehusker was higher than that of stone disk dehusker, corresponding to the higher dehusking efficiency.
文摘With a growing consumer market of battery electric vehicles, customers' demand for technology and features is on the rise. The range and, to a certain extent, the range estimation will play a key factor in customers' purchase decisions. In order to guarantee a precise range estimation over the usage life of battery electric vehicles, a method is presented that combines adaptive filter algorithms with statistical approaches. The statistical approach uses recurring driving cycles over the lifetime in order to derive the aging status of the traction battery. It is implied that the variance of the energy usage of these driving cycles is within certain bounds. This fact should be proven by an experimental case study. The dataset used in this paper is open to the public.
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
基金Projects(50674107, 10472134, 50490274) supported by the National Natural Science Foundation of China
文摘In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.
基金supported by National Natural Science Foundation (No. 71273277)National Social Science Foundation (No. 13&ZD159)
文摘China's energy consumption experienced rapid growth over the past three decades, raising great concerns for the future adjustment of China's energy consumption structure. This paper first presents the historical evidence on China's energy consumption by the fuel types and sectors. Then, by establishing a bottom-up accounting framework and using long-range energy alternatives plan- ning energy modeling tool, the future of China's energy consumption structure under three scenarios is forecast. According to the estimates, China's total energy con- sumption will increase from 3014 million tonnes oil equivalent (Mtoe) in 2015 to 4470 Mtoe in 2040 under the current policies scenario, 4040 Mtoe in 2040 under the moderate policies scenario and 3320 Mtoe in 2040 under the strong policies scenario, respectively, lower than those of the IEA's estimations. In addition, the clean fuels (gas, nuclear and renewables) could be an effective alternative to the conventional fossil fuels (coal and oil) and offer much more potential. Furthermore, the industry sector has much strong reduction potentials than the other sectors. Finally, this paper suggests that the Chinese government should incorporate consideration of adjustment of the energy consumption structure into existing energy policies and measures in the future.