A precise energy conversion factor is required to define the impact of greenhouse gas emissions by gasoline-powered vehi-cles and policies that will guide the application of future eco-innovations.The current energy c...A precise energy conversion factor is required to define the impact of greenhouse gas emissions by gasoline-powered vehi-cles and policies that will guide the application of future eco-innovations.The current energy conversion factor adopted by many countries is based on the Willans line approach,initially proposed in 1888 for steam engines,later adapted for internal combustion engines.The actual energy conversion factor,which defines the energy conversion for drivers in real traffic,is missing.In this article,eight world-class engines are tested in an engine bench for the acquisition of specific fuel consumption 3D maps.Then,their energy conversion factors,calculated by dividing the energy output by the energy input,are simulated in real and urban traffic,acquired according to the real driving emissions(RDE)cycle.In addition,a reference vehicle is instrumented to measure the energy input(fuel flow)and the energy output(mechanical energy in the half axles)under the same RDE cycle standards.The results of both procedures are very similar,respectively,0.405±0.04 L/kWh for the simulation based on eight benchmark engines,and 0.392±0.04 L/kWh for the reference vehicle driven in RDE traffic conditions,with a 95%confidence interval.For turbocharged engines,the factor attained by the simulation is 0.395±0.04 L/kWh.The values of the energy conversion factor for gasoline engines got in this research are higher than those obtained through the Willans line approach,suggesting a new standard value of 0.405 L/kWh,replacing the current 0.264 L/kWh.It could substantially change the greenhouse gas emissions in a tank-to-wheel approach for the entire vehicle and add-on eco-innovations.展开更多
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal...A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.展开更多
基金The authors thank Brazilian Development BNDES for the economic support,the Joint Research Centre JRC for the technical assistance to this project and to Mr.Adam Aslam/Gabriel Santos for the grammar revision.
文摘A precise energy conversion factor is required to define the impact of greenhouse gas emissions by gasoline-powered vehi-cles and policies that will guide the application of future eco-innovations.The current energy conversion factor adopted by many countries is based on the Willans line approach,initially proposed in 1888 for steam engines,later adapted for internal combustion engines.The actual energy conversion factor,which defines the energy conversion for drivers in real traffic,is missing.In this article,eight world-class engines are tested in an engine bench for the acquisition of specific fuel consumption 3D maps.Then,their energy conversion factors,calculated by dividing the energy output by the energy input,are simulated in real and urban traffic,acquired according to the real driving emissions(RDE)cycle.In addition,a reference vehicle is instrumented to measure the energy input(fuel flow)and the energy output(mechanical energy in the half axles)under the same RDE cycle standards.The results of both procedures are very similar,respectively,0.405±0.04 L/kWh for the simulation based on eight benchmark engines,and 0.392±0.04 L/kWh for the reference vehicle driven in RDE traffic conditions,with a 95%confidence interval.For turbocharged engines,the factor attained by the simulation is 0.395±0.04 L/kWh.The values of the energy conversion factor for gasoline engines got in this research are higher than those obtained through the Willans line approach,suggesting a new standard value of 0.405 L/kWh,replacing the current 0.264 L/kWh.It could substantially change the greenhouse gas emissions in a tank-to-wheel approach for the entire vehicle and add-on eco-innovations.
基金Supported by the National Science and Technology Support Program(2013BAG12B01)Foundational and Advanced Research Program General Project of Chongqing City(cstc2013jcyjjq60002)
文摘A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.