An equation of atomization quantity from energy dissipation by hydraulic jump was derived from the dimensional analysis. By applying Gauss diffusion equation, the spray diffusion rule in valley was studied under the c...An equation of atomization quantity from energy dissipation by hydraulic jump was derived from the dimensional analysis. By applying Gauss diffusion equation, the spray diffusion rule in valley was studied under the condition of continuous linear source and random wind direction.By considering the spray rain switching process, coagulation, condensation and evaporation of droplets, the air temperature, air relative humidity, spray density and the rainfall intensity in the lower reaches of the linear source were calculated. The 3 D numerical simulation fitted well with prototype monitoring. Finally, the prediction of atomization influence on environments for Xiangjiaba Hydropower Station was conducted.展开更多
Dealing with kinetic energy is one of the most important problems in hydraulic structures,and this energy can damage downstream structures.This study aims to study energy dissipation of supercritical water flow passin...Dealing with kinetic energy is one of the most important problems in hydraulic structures,and this energy can damage downstream structures.This study aims to study energy dissipation of supercritical water flow passing through a sudden contraction.The experiments were conducted on a sudden contraction with 15 cm width.A 30 cm wide flume was installed.The relative contraction ranged from 8.9 to 9.7,where relative contraction refers to the ratio of contraction width to initial flow depth.The Froude value in the investigation varied from 2 to 7.The contraction width of numerical simulation was 5~15 cm,the relative contraction was 8.9~12.42,and the Froude value ranged from 8.9~12.42.In order to simulate turbulence,the k-εRNG model was harnessed.The experimental and numerical results demonstrate that the energy dissipation increases with the increase of Froude value.Also,with the sudden contraction,the rate of relative depreciation of energy is increased due to the increase in backwater profile and downstream flow depth.The experimentation verifies the numerical results with a correlation coefficient of 0.99 and the root mean square error is 0.02.展开更多
Bottom flow energy dissipation is one of the common energy dissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydrauli...Bottom flow energy dissipation is one of the common energy dissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump. In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.展开更多
文摘An equation of atomization quantity from energy dissipation by hydraulic jump was derived from the dimensional analysis. By applying Gauss diffusion equation, the spray diffusion rule in valley was studied under the condition of continuous linear source and random wind direction.By considering the spray rain switching process, coagulation, condensation and evaporation of droplets, the air temperature, air relative humidity, spray density and the rainfall intensity in the lower reaches of the linear source were calculated. The 3 D numerical simulation fitted well with prototype monitoring. Finally, the prediction of atomization influence on environments for Xiangjiaba Hydropower Station was conducted.
文摘Dealing with kinetic energy is one of the most important problems in hydraulic structures,and this energy can damage downstream structures.This study aims to study energy dissipation of supercritical water flow passing through a sudden contraction.The experiments were conducted on a sudden contraction with 15 cm width.A 30 cm wide flume was installed.The relative contraction ranged from 8.9 to 9.7,where relative contraction refers to the ratio of contraction width to initial flow depth.The Froude value in the investigation varied from 2 to 7.The contraction width of numerical simulation was 5~15 cm,the relative contraction was 8.9~12.42,and the Froude value ranged from 8.9~12.42.In order to simulate turbulence,the k-εRNG model was harnessed.The experimental and numerical results demonstrate that the energy dissipation increases with the increase of Froude value.Also,with the sudden contraction,the rate of relative depreciation of energy is increased due to the increase in backwater profile and downstream flow depth.The experimentation verifies the numerical results with a correlation coefficient of 0.99 and the root mean square error is 0.02.
文摘Bottom flow energy dissipation is one of the common energy dissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump. In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.