期刊文献+
共找到314篇文章
< 1 2 16 >
每页显示 20 50 100
Mechanical response and dilatancy characteristics of deep marble under different stress paths:A sight from energy dissipation
1
作者 LIU Xiao-hui HAO Qi-jun +2 位作者 ZHENG Yu ZHANG Zhao-peng XUE Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2070-2086,共17页
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ... Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal. 展开更多
关键词 deep marble stress paths DILATANCY energy dissipation empirical dilatancy coefficient
下载PDF
Mechanical behavior of rock under uniaxial tension:Insights from energy storage and dissipation
2
作者 Guanshuang Tan Chunde Ma +3 位作者 Junjie Zhang Wenyuan Yang Guiyin Zhang Zihao Kang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2466-2481,共16页
Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and r... Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and release of energy.To investigate the tensile behavior of rock from the perspective of energy,uniaxial tension tests(UTTs)and uniaxial compression tests(UCTs)were carried out on three typical rocks(granite,sandstone and marble).Different unloading points were set before the peak stress to separate elastic energy and dissipated energy.The input energy density ut,elastic energy density ue,and dissipated energy density ud at each unloading point were calculated by integrating stress-strain curves.The results show that there is a strong linear relationship between the three energy parameters and the square of the unloading stress in UCT,but this linear relationship is weaker in UTT.The ue and ud increase linearly with the increase in ut in UCT and UTT.Based on the phenomenon that ue and ud increase linearly with ut,the applicability of W_(et)^(p) index in UTT was proved and the relative energy storage capacity and absolute energy distribution characteristics of three rocks in UCT and UTT were evaluated.The tensile behavior of marble and sandstone in UTT can be divided into two stages vaguely according to the energy distribution,but granite is not the case.In addition,based on dissipated energy,the damage evolution of three types of rocks in UCT and UTT was discussed.This study provides some new insights for understanding the tensile behavior of rock. 展开更多
关键词 Uniaxial tension energy density Mechanical behavior energy storage coefficient energy dissipation coefficient
下载PDF
Anisotropic characteristics of layered backfill:Mechanical properties and energy dissipation
3
作者 Huisheng Qu Lang Liu +4 位作者 Yonglu Suo Mengbo Zhu Pan Yang Caixing Zhang Geng Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3188-3208,共21页
Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination a... Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior,energy dissipation characteristics and crack development of backfill.P-wave velocity,uniaxial compression,scanning electron microscope(SEM),and acoustic emission(AE)experiments were conducted.The results indicate that:(1)The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle,respectively;the strength,delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship,which can realize the rapid prediction of strength.(2)The microstructure of the delaminated surface is looser than that of the matrix,leading to a decrease in strength and an increase at the pore-fissure compaction stage.The number and angle of delamination increase linearly with the anisotropy coefficient.(3)The energy evolution in angle-cut backfill can be divided into four stages,with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle.(4)Crack development increases with the number of delamination surface and delamination angle,resulting in a decrease in energy dissipation coefficient and peak AE energy.These findings provide valuable insights for the design of filling materials and processes in mining operations. 展开更多
关键词 Layered backfill Delamination par ameters Anisotropic mechanical behavior P-wave velocity energy dissipation characteristics Acoustic emission(AE)
下载PDF
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
4
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 Assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Energy evolution and structural health monitoring of coal under different failure modes:An experimental study
5
作者 Yarong Xue Xueqiu He +4 位作者 Dazhao Song Zhenlei Li Majid Khan Taoping Zhong Fei Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期917-928,共12页
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T... Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology. 展开更多
关键词 energy dissipation structural health monitoring early warning coal-rock mechanics failure mode
下载PDF
Load-bearing characteristics and energy evolution of fractured rock masses after granite and sandstone grouting
6
作者 WU Xu-kun ZHAO Guang-ming +4 位作者 MENG Xiang-rui LIU Chong-yan LIU Zhi-xi HUANG Shun-jie ZHANG Qi-hang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2810-2825,共16页
Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of ... Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting. 展开更多
关键词 grouting-reinforced rock mass particle size energy dissipation ratio post-peak stress decreasing rate load-bearing characteristics
下载PDF
Characteristics of Rock Mechanics Response and Energy Evolution Regime of Deep Reservoirs in the Bozhong Sag,Bohai Bay Basin
7
作者 Suogui Shang Kechao Gao +4 位作者 QingbinWang Xinghua Zhang Pengli Zhou Jianhua Li Peng Chu 《Energy Engineering》 EI 2024年第9期2505-2524,共20页
Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology l... Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions.In this work,based on outcrop core samples,high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag.Additionally,this study analyzes the deformation and damage law for rock under different stress conditions.Wherein,with a particular focus on combining energy dissipation theory to further understand damage law for deep reservoirs.The experimental results show that regardless of stress conditions,the process of deformation/failure of deep-seated reservoirs goes through five stages:Fracture compaction,newfracture formation,stable fracture expansion,unstable fracture expansion,and post-peak residual deformation.Under different stress conditions,the energy change laws of specimens are similar.The energy dissipation process of rocks corresponds closely to the trend of deformation-failure curve,then displays distinctive stage characteristics.Wherein,in stage of rock fracture compaction,the input energy curve is approximately coincident with the elastic strain energy curve,while the dissipation energy curve remains near zero.With the increase of strain,the growth rate of elastic strain energy increases gradually,but with the deformation entering the crack propagation stage,the growth rate of elastic strain energy slows down and the dissipation energy increases gradually.Finally,in the post-peak stage,rock fracture releases a lot of energy,which leads to the sharp decline of elastic strain energy curve.In addition,the introduction of damage variable D quantifies the analysis of the extent of failure for rocks.During the process of increasing strain,rock damage exhibits nonlinear growth with increasing stress. 展开更多
关键词 Deep rock mechanics triaxial compression energy dissipation damage variable
下载PDF
Effect of thermal treatment on energy dissipation of granite under cyclic impact loading 被引量:19
8
作者 Rong-hua SHU Tu-bing YIN +2 位作者 Xi-bing LI Zhi-qiang YIN Li-zhong TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第2期385-396,共12页
High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treat... High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treated rocks were carried out using the splitting Hopkinson pressure bar(SHPB)experimental system.The correlations among the energy dissipation,energy dissipation rate,impact times,accumulated absorbed energy per volume,failure mode and temperature were analyzed.The results show that the reflected energy under the first impact increases and finally exceeds the absorbed energy when the temperature increases;however,the total reflected energy decreases above 200℃.The absorbed energy under the first impact and the total absorbed energy all decrease as the temperature increases,the rates of which decrease accordingly.And the same phenomenon appears for the transmitted energy and the rate of the transmitted energy.On the contrary,the rate of the reflected energy increases with the rising temperature.When the temperature increases,the fewer impact times are needed to destroy the sample.In addition,the failure modes are different when the rock is treated at different temperatures;that is,when the temperature is high,even though the absorbed energy is low,the sample breaks into powder after several impacts. 展开更多
关键词 energy dissipation GRANITE cyclic impact compression thermal treatment
下载PDF
Energy dissipation of coal and rock during damage and failure process based on EMR 被引量:16
9
作者 Song Dazhao Wang Enyuan +2 位作者 Li Zhonghui Liu Jie Xu Wenquan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期787-795,共9页
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t... The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency. 展开更多
关键词 energy dissipation Electromagnetic radiation Coal and rock Damage and failure Rock burst
下载PDF
Energy dissipation rate: An indicator of coal deformation and failure under static and dynamic compressive loads 被引量:15
10
作者 Feng Junjun Wang Enyuan +1 位作者 Chen Xia Ding Houcheng 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期397-406,共10页
Dynamic disasters in Chinese coal mines pose a significant threat to coal productivity. Thus, a thorough understanding of the deformation and failure processes of coal is necessary. In this study, the energy dissipati... Dynamic disasters in Chinese coal mines pose a significant threat to coal productivity. Thus, a thorough understanding of the deformation and failure processes of coal is necessary. In this study, the energy dissipation rate is proposed as a novel indicator of coal deformation and failure under static and dynamic compressive loads. The relationship between stress-strain, uniaxial compressive strength, displacement rate, loading rate, fractal dimension, and energy dissipation rate was investigated through experiments conducted using the MTS C60 tests(static loads) and split Hopkinson pressure bar system(dynamic loads). The results show that the energy dissipation rate peaks are associated with stress drop during coal deformation, and also positively related to the uniaxial compressive strength. A higher displacement rate of quasi-static loads leads to an initial increase and then a decrease in energy dissipation rate, whereas a higher loading rate of dynamic loads results in larger energy dissipation rate. Theoretical analysis indicates that a sudden increase in energy dissipation rate suggests partial fracture occurring within coal under both quasi-static and dynamic loads. Hence, the energy dissipation rate is an essential indicator of partial fracture and final failure within coal, as well as a prospective precursor for catastrophic failure in coal mine. 展开更多
关键词 energy dissipation Stress drop SPLIT Hopkinson pressure bar (SHPB) STRESS-STRAIN Uniaxial compressive strength
下载PDF
Bearing capacity of foundation on slope determined by energy dissipation method and model experiments 被引量:15
11
作者 杨小礼 王志斌 +1 位作者 邹金锋 李亮 《Journal of Central South University of Technology》 EI 2007年第1期125-128,共4页
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experi... To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope. 展开更多
关键词 energy dissipation bearing capacity soil slope model experiment
下载PDF
Mechanical and energy dissipation characteristics of granite under cyclic impact loading 被引量:8
12
作者 DAI Bing SHAN Qi-wei +1 位作者 CHEN Ying LUO Xin-yao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期116-128,共13页
This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry ... This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe. 展开更多
关键词 specific energy damage strain rate failure form energy dissipation failure mode
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:5
13
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
Energy dissipation of a ring-like metal rubber isolator 被引量:4
14
作者 闫辉 张文静 +1 位作者 姜洪源 陈亮 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期198-201,共4页
Metal rubber (MR) is a kind of homogeneous poroelastic damping material made of metal wire. In this paper, by ana- lyzing the forces on the MR isolator and the MR element, the hysteresis loops of the force and defor... Metal rubber (MR) is a kind of homogeneous poroelastic damping material made of metal wire. In this paper, by ana- lyzing the forces on the MR isolator and the MR element, the hysteresis loops of the force and deformation are studied and verified by experiments. The results show that the force and displacement hysteresis loop of the MR isolator is described by the force and deformation hysteresis loops of the MR elements. In addition, the relationship between the energy dissipation coefficient of the MR element and that of the MR isolator is derived. The energy dissipation coefficient is programmed and calculated by MATLAB using experimental data, and the results are compared with the theoretical value. It is the basis for the design and applied research of the MR isolator in a future study. 展开更多
关键词 metal rubber hysteresis loop experimental study energy dissipation coefficient
下载PDF
Mechanical Response and Energy Dissipation Analysis of Heat-Treated Granite Under Repeated Impact Loading 被引量:4
15
作者 Zhiliang Wang Nuocheng Tian +2 位作者 Jianguo Wang Shengqi Yang Guang Liu 《Computers, Materials & Continua》 SCIE EI 2019年第4期275-296,共22页
The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,40... The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth. 展开更多
关键词 GRANITE heat treatment repeated impact dynamic response energy dissipation
下载PDF
Characteristics of viscous debris flow in a drainage channel with an energy dissipation structure 被引量:4
16
作者 CHEN Jian-gang CHEN Xiao-qing +1 位作者 CHEN Hua-yong ZHAO Wan-yu 《Journal of Mountain Science》 SCIE CSCD 2016年第2期223-233,共11页
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental... A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0). 展开更多
关键词 Debris flow Drainage channel energy dissipation structure Geological disaster
下载PDF
A five-parameter constitutive model for hysteresis shearing and energy dissipation of rock joints 被引量:3
17
作者 Yikun Li Tongbin Zhao +1 位作者 Yifei Li Yang Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期737-746,共10页
Rock joints exhibit hysteresis shearing behavior and produce energy dissipation under shear cyclic loads,which however cannot be accurately depicted by existing constitutive models. This paper establishes a constituti... Rock joints exhibit hysteresis shearing behavior and produce energy dissipation under shear cyclic loads,which however cannot be accurately depicted by existing constitutive models. This paper establishes a constitutive model for hysteresis shearing and associated energy dissipation of rock joints. Analytical expressions of the model during cyclic shearing processes are derived. Derivation of the model indicates no energy dissipation in the elastic stage. When the shear load exceeds elastic boundary, nonlinear energy dissipation takes place. Validations with experiments show that the proposed model provides good conformities with direct shear curves and hysteresis loops, and can predict the energy dissipation characteristics of rock joints under different working conditions. Compared to the constitutive models using Weibull's distribution, the proposed one is smooth at the elastic boundary and can accurately capture the maximum shear stress. Unlike the existing incremental-type models, the proposed one provides clear and direct analytical expressions for both shear stress and energy dissipation during the whole displacement domain, which is more convenient in application. 展开更多
关键词 Iwan model Rock joint Cyclic shear HYSTERESIS energy dissipation
下载PDF
Response and energy dissipation of rock under stochastic stress waves 被引量:4
18
作者 邓建 边利 《Journal of Central South University of Technology》 EI 2007年第1期111-114,共4页
The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When th... The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis. When the stochastic stress waves transmit through rocks, the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods. The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods. The results show the harder the rock, the less absorption of energy, the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock. When the whole stress energy doubles either by doubling the duration time or by increasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to the whole stress energy (i.e. energy dissipation ratio) is decreased to 10%-15%. When doubling the duration time, the cutoff frequency to fracture rock remains constant. However, with the increase of the amplitude of stress wave, the cutoff frequency increases accordingly. 展开更多
关键词 stochastic stress waves dynamic fracture criterion Fourier transform energy dissipation ROCK
下载PDF
Energy dissipation of cavity expansion based on generalized non-linear failure criterion under high stresses 被引量:3
19
作者 邹金锋 童无欺 赵健 《Journal of Central South University》 SCIE EI CAS 2012年第5期1419-1424,共6页
Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the ... Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the cavity expanding were adopted.The energy conservation equation was established and the limited pressure of cavity expansion under high stresses was given based on the energy dissipation analysis method,in which the energy generated from cavity expansion is absorbed by the volume change and shear strain caused in soil.The factors of large strain and dilatation were considered by the proposed method.The analysis shows that the limited pressure is determined by failure criterion,stress state,large deformation characteristic,dilatation and strength of soil.It is shown from the comparison that the results with the proposed method approximate to those of the in-situ method.The cavity expansion pressure first decreases and then increases nonlinearly with both of shear modulus and dilatation increasing. 展开更多
关键词 energy dissipation energy conservation large strain cavity expansion high stress
下载PDF
Effect of specimen size on energy dissipation characteristics of red sandstone under high strain rate 被引量:26
20
作者 Li Ming Mao Xianbiao +4 位作者 Lu Aihong Tao Jing Zhang Guanghui Zhang Lianying Li Chong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期151-156,共6页
In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respectively, were subjected to blow tests using a Split Hopkinson Pressure Bar(SHPB) system at a pressure of 0.4 atmosph... In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respectively, were subjected to blow tests using a Split Hopkinson Pressure Bar(SHPB) system at a pressure of 0.4 atmospheres. In this paper, we have analyzed the effect of slenderness ratio on the mechanical properties and energy dissipation characteristics of red sandstone under high strain rates. The processes of compaction, elastic deformation and stress softening deformation of specimens contract with an increase in slenderness ratio, whilst the nonlinear deformation process extends correspondingly. In addition, degrees of damage of specimens reduced gradually and the type of destruction showed a transformation trend from stretching failure towards shear failure when the slenderness ratio increased. A model of dynamic damage evolution in red sandstone was established and the parameters of the constitutive model at different ratios of length to diameter were determined. By comparison with the experimental curve, the accuracy of the model, which could reflect the stress–strain dynamic characteristics of red sandstone, was verified. From the view of energy dissipation, an increase in slenderness ratio of a specimen decreased the proportion of energy dissipation and caused a gradual fall in the capability of energy dissipation during the specimen failure process. To some extent, the study indicated the effects of slenderness ratios on the mechanical properties and energy dissipation characteristics of red sandstone under the high strain rate, which provides valuable references to related engineering designs and academic researches. 展开更多
关键词 Red sandstone Slenderness ratio SHP BImpact failure energy dissipation
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部