The CO2 emission reduction policy of the International Maritime Organization(IMO)recommends that the operation of ships,managed by maritime transport companies,should be energy-efficient.An evaluation method that can ...The CO2 emission reduction policy of the International Maritime Organization(IMO)recommends that the operation of ships,managed by maritime transport companies,should be energy-efficient.An evaluation method that can determine how successfully a ship implements the energy efficiency plan is proposed in this study.To develop this method,the measures required for energy-efficient ship operations according to the Ship Energy Efficiency Management Plan(SEEMP)operational guidelines were selected.The weights of the selected measures,which indicate how they contribute to the energy-efficient operation of a ship,were derived using a survey based on the analytic hierarchy process(AHP)method.Consequently,using these measures and their weights,a new evaluation method was proposed.This evaluation method was applied to shipping companies in South Korea,and their ship operation energy efficiency indices were derived and compared.This evaluation method will be useful to the government and shipping companies in assessing the energy efficiency of ship operations.展开更多
This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitutio...This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.展开更多
More than 10000 different types of ship ply the waters of Bangladesh all year round,but the performance of these ships in terms of CO2 emission is not known and regulations related to energy efficiency of inland water...More than 10000 different types of ship ply the waters of Bangladesh all year round,but the performance of these ships in terms of CO2 emission is not known and regulations related to energy efficiency of inland waterway ships remain nonexistent.This paper attempts to assess the present situation of inland class vessels in terms of Energy Efficiency Design Index(EEDI).With the use of a developed database of inland vessels in Bangladesh,EEDI reference lines for different types of inland vessels in Bangladesh were established and then compared with those of other countries.The present EEDI of existing inland vessels was investigated.Results indicate that most of the existing vessels do not meet the current EEDI baseline.Hence,new guidelines are necessary to achieve EEDI compliance in the near future.Some recommendations were proposed for improving CO2 emissions,with the socioeconomic and technical factors in Bangladesh taken into consideration.展开更多
Bohai Rim region is an important economic development area and a large carbon emission area in China.It is of great significance to explore the total factor energy efficiency and its influencing factors for the low ca...Bohai Rim region is an important economic development area and a large carbon emission area in China.It is of great significance to explore the total factor energy efficiency and its influencing factors for the low carbon transformation and high-quality development of the Bohai Rim region.Based on the total factor energy efficiency framework,the DDF-DEA model was used to calculate the total factor energy efficiency,and the internal and external differences of the total factor energy efficiency were further analyzed.The internal and external influencing factors were determined by ML index method and classical endogenous growth theory,and then the Tobit panel model was used to empirically analyze the action mechanism of all influencing factors of total factor energy efficiency in the Bohai Rim region.The results show that the pure technical efficiency,scale efficiency and technological progress among the internal influencing factors contribute to the improvement of energy efficiency in the Bohai Rim region.Industrial structure,industrial internal structure and ownership structure inhibit the improvement of energy efficiency.Energy consumption structure and energy endowment also have a negative impact on energy efficiency.Therefore,measures such as promoting technological progress,adjusting economic structure and optimizing energy structure will effectively improve total factor energy efficiency in the Bohai Rim region.展开更多
With increasing global shortage of fresh water resources,many countries are prioritizing desalination as a means of utilizing abundantly available seawater resources.Integrated energy efficiency evaluation is a scient...With increasing global shortage of fresh water resources,many countries are prioritizing desalination as a means of utilizing abundantly available seawater resources.Integrated energy efficiency evaluation is a scientific method for the quantitative analysis of energy efficiency based on multiple indicators and is very useful for investment,construction,and scientific decision-making for desalination projects.In this paper,the energy efficiency evaluation of the micro energy network (MEN) of desalination for multi-source and multi-load is studied,and the basic idea of comprehensive energy efficiency evaluation is analyzed.The process includes the use of a MEN model to establish an integrated energy efficiency evaluation index system,taking into consideration energy,equipment,economic,environmental,and social factors.A combined evaluation method considering subjective and objective comprehensive weights for multi-source multi-load desalination MENs is proposed to evaluate the energy efficiency of desalination and from multiple perspectives.展开更多
Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and ...Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and multi-parameter setting in cracking process,it is difficult to find the overall energy efficiency scheduling for the purpose of saving energy.The traditional scheduling solutions with optimal economic benefit are not applicable for energy efficiency scheduling issue due to the neglecting of recycle and lost energy,as well as critical operation parameters as coil outlet pressure(COP)and dilution ratio.In addition,the scheduling solutions mostly regard each cracking furnace as an elementary unit,regardless of the coordinated operation of internal dual radiation chambers(DRC).Therefore,to improve energy utilization and production operation,a novel energy efficiency scheduling solution for ethylene cracking process is proposed in this paper.Specifically,steam heat recycle and exhaust heat loss are considered in cracking process based on 6 types of extreme learning machine(ELM)based cracking models incorporating DRC operation and three operation parameters as coil outlet temperature(COT),COP,and dilution ratio according to semi-mechanism analysis.Then to provide long-term decision-making basis for energy efficiency scheduling,overall energy efficiency indexes,including overall output per unit net energy input(OONE),output-input ratio per unit net energy input(ORNE),exhaust gas heat loss ratio(EGHL),are designed based on input-output analysis in terms of material and energy flows.Finally,a multiobjective evolutionary algorithm based on decomposition(MOEA/D)is employed to solve the formulated multi-objective mixed-integer nonlinear programming(MOMINLP)model.The validities of the proposed scheduling solution are illustrated through a case study.The scheduling results demonstrate that an optimal balance between multi-flow allocation,multi-parameter setting,and DRC coordinated operation is reached,which achieves 3.37%and 2.63%decreases in net energy input for same product output and conversion ratio,as well as the 1.56%decrease in energy loss ratio.展开更多
The rebound effects of technological advancement on energy consumption make it very complicated to measure the impact of technological advancement on energy efficiency.This article,taking 35 industries as samples,util...The rebound effects of technological advancement on energy consumption make it very complicated to measure the impact of technological advancement on energy efficiency.This article,taking 35 industries as samples,utilizes the non-parameter DEA-Malmquist productivity approach to subcategorise technological advancement into three parts:science-technological(sci-tech)progress,pure technical efficiency and efficiency of scale.The panel technique is then used to work out each subcategory’s contribution to energy efficiency individually.Findings show that technological efficiency (calculated by multiplying the results of pure technical efficiency and scale efficiency)is the principal factor in the improvement of energy efficiency while the contribution from sci-tech progress is comparatively less.Overtime,however,the effect of sci-tech progress is gradually heightened while the effect of technical efficiency slowly diminishes.展开更多
Green Internet of things (loT) has been heralded as the "next big thing" waiting to be realized in energy-efficient ubiquitous computing. Green IoT revolves around increased machine-to-machine communications and e...Green Internet of things (loT) has been heralded as the "next big thing" waiting to be realized in energy-efficient ubiquitous computing. Green IoT revolves around increased machine-to-machine communications and encompasses energy-efficient wireless embedded sensors and actuators that assist in monitoring and controlling home appliances. Energy efficiency in home applications can be achieved by better monitoring of the specific energy consumption by the appliances. There are many wireless standards that can be adopted for the design of such embedded devices in loT. These communication technologies cater to different requirements and are classified as the short-range and long-range ones. To select the best communication method, this paper surveys various loT communication technologies and discusses the advantages and disadvantages to develop an energy monitoring system. An IoT device based on the Wi-Fi technology system is developed and tested for usage in the home energy monitoring environment. The performance of this system is then evaluated by the measurement of power consumption metrics. In the efficient deep-sleep mode, the system saves up to 0.3 W per cycle with an average power dissipation of less than 0.1 W/s.展开更多
As one of the national strategic emerging industries, new-energy-automobile industry has been caused people’s attention increasingly. Therefore, improving the new energy industry listing corporation performance, not ...As one of the national strategic emerging industries, new-energy-automobile industry has been caused people’s attention increasingly. Therefore, improving the new energy industry listing corporation performance, not only can alleviate the pressure on energy and the environment, but also can conducive to accelerating the transformation and upgrading of the automotive industry. Moreover, it can foster new economic point of growth and international competitiveness. This essay uses the super efficiency DEA model and Malmquist index method to analyze the performance of new-energy-automotive industry listing corporation. The data is from Year 2011 to 2013. Finally according to the conclusion of the empirical research, this paper made several suggestions to improve the operational efficiency of China’s new energy automobile enterprises and promote new energy-automobile industry.展开更多
“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(deci...“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(decision making trial and evaluation laboratory,DEMATEL)与超效率数据包络分析(data envelopment analysis,DEA)模型的可再生能源发电技术综合效益评估方法。该方法分为投入-产出指标体系构建和综合评估2个阶段。首先,利用三角直觉模糊数处理模糊评价信息,将其与DEMATEL相结合量化各指标之间相互影响关系,基于指标间逻辑分析结果建立投入-产出评估指标体系。然后,基于超效率DEA模型对各可再生能源发电方案进行评估排序,结合投入冗余和产出不足分析结果给出各方案的针对性改善建议,以期为进一步选择和确定可再生能源产业发展战略提供参考。最后以某省10类可再生能源发电单元为研究对象,基于所提研究方法进行综合评估和分析,并与多准则妥协解排序法和熵权法进行对比分析,验证了所提方法的有效性。展开更多
基金support from the project titled "Development of Ship-handling and Passenger Evacuation Support System" funded by the Ministry of Oceans and Fisheries(South Korea-MOF)
文摘The CO2 emission reduction policy of the International Maritime Organization(IMO)recommends that the operation of ships,managed by maritime transport companies,should be energy-efficient.An evaluation method that can determine how successfully a ship implements the energy efficiency plan is proposed in this study.To develop this method,the measures required for energy-efficient ship operations according to the Ship Energy Efficiency Management Plan(SEEMP)operational guidelines were selected.The weights of the selected measures,which indicate how they contribute to the energy-efficient operation of a ship,were derived using a survey based on the analytic hierarchy process(AHP)method.Consequently,using these measures and their weights,a new evaluation method was proposed.This evaluation method was applied to shipping companies in South Korea,and their ship operation energy efficiency indices were derived and compared.This evaluation method will be useful to the government and shipping companies in assessing the energy efficiency of ship operations.
基金Foundation item: Supported by the National Special Fund for Agro-scientific Research in the Public Interest (No.201003024), and the National Natural Science Foundation of China (No.51409042 No. 51209034).
文摘This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.
文摘More than 10000 different types of ship ply the waters of Bangladesh all year round,but the performance of these ships in terms of CO2 emission is not known and regulations related to energy efficiency of inland waterway ships remain nonexistent.This paper attempts to assess the present situation of inland class vessels in terms of Energy Efficiency Design Index(EEDI).With the use of a developed database of inland vessels in Bangladesh,EEDI reference lines for different types of inland vessels in Bangladesh were established and then compared with those of other countries.The present EEDI of existing inland vessels was investigated.Results indicate that most of the existing vessels do not meet the current EEDI baseline.Hence,new guidelines are necessary to achieve EEDI compliance in the near future.Some recommendations were proposed for improving CO2 emissions,with the socioeconomic and technical factors in Bangladesh taken into consideration.
基金supported by the National Natural Science Foundation of China under Grant 71804089the Humanities and Social Sciences Youth Foundation of Ministry of Education of China under Grants 18YJCZH034 and 19YJC790128+3 种基金the Jiangsu Postdoctoral Research Foundation underGrant 2018K195C,the Natural Science Foundation of Shandong Province in China under Grant ZR2020QG054the Graduate Education Quality Improvement Project of Shandong Province,China under Grants SDYKC19180 and SDYAL19180The project number of“The quality course in Financial Statistics”is SDYKC19180The project number of“Financial Literacy Oriented Case Library of Derivative Financial Instruments Teaching”is SDYAL19180.
文摘Bohai Rim region is an important economic development area and a large carbon emission area in China.It is of great significance to explore the total factor energy efficiency and its influencing factors for the low carbon transformation and high-quality development of the Bohai Rim region.Based on the total factor energy efficiency framework,the DDF-DEA model was used to calculate the total factor energy efficiency,and the internal and external differences of the total factor energy efficiency were further analyzed.The internal and external influencing factors were determined by ML index method and classical endogenous growth theory,and then the Tobit panel model was used to empirically analyze the action mechanism of all influencing factors of total factor energy efficiency in the Bohai Rim region.The results show that the pure technical efficiency,scale efficiency and technological progress among the internal influencing factors contribute to the improvement of energy efficiency in the Bohai Rim region.Industrial structure,industrial internal structure and ownership structure inhibit the improvement of energy efficiency.Energy consumption structure and energy endowment also have a negative impact on energy efficiency.Therefore,measures such as promoting technological progress,adjusting economic structure and optimizing energy structure will effectively improve total factor energy efficiency in the Bohai Rim region.
基金supported by the State Grid Corporation of China project titled “Study on Multisource and Multi-load Coordination and Optimization Technology Considering Desalination of Sea Water”(SGTJDK00DWJS1800011)
文摘With increasing global shortage of fresh water resources,many countries are prioritizing desalination as a means of utilizing abundantly available seawater resources.Integrated energy efficiency evaluation is a scientific method for the quantitative analysis of energy efficiency based on multiple indicators and is very useful for investment,construction,and scientific decision-making for desalination projects.In this paper,the energy efficiency evaluation of the micro energy network (MEN) of desalination for multi-source and multi-load is studied,and the basic idea of comprehensive energy efficiency evaluation is analyzed.The process includes the use of a MEN model to establish an integrated energy efficiency evaluation index system,taking into consideration energy,equipment,economic,environmental,and social factors.A combined evaluation method considering subjective and objective comprehensive weights for multi-source multi-load desalination MENs is proposed to evaluate the energy efficiency of desalination and from multiple perspectives.
基金supported by the High-tech Research and Development Program of China(2014AA041802)。
文摘Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and multi-parameter setting in cracking process,it is difficult to find the overall energy efficiency scheduling for the purpose of saving energy.The traditional scheduling solutions with optimal economic benefit are not applicable for energy efficiency scheduling issue due to the neglecting of recycle and lost energy,as well as critical operation parameters as coil outlet pressure(COP)and dilution ratio.In addition,the scheduling solutions mostly regard each cracking furnace as an elementary unit,regardless of the coordinated operation of internal dual radiation chambers(DRC).Therefore,to improve energy utilization and production operation,a novel energy efficiency scheduling solution for ethylene cracking process is proposed in this paper.Specifically,steam heat recycle and exhaust heat loss are considered in cracking process based on 6 types of extreme learning machine(ELM)based cracking models incorporating DRC operation and three operation parameters as coil outlet temperature(COT),COP,and dilution ratio according to semi-mechanism analysis.Then to provide long-term decision-making basis for energy efficiency scheduling,overall energy efficiency indexes,including overall output per unit net energy input(OONE),output-input ratio per unit net energy input(ORNE),exhaust gas heat loss ratio(EGHL),are designed based on input-output analysis in terms of material and energy flows.Finally,a multiobjective evolutionary algorithm based on decomposition(MOEA/D)is employed to solve the formulated multi-objective mixed-integer nonlinear programming(MOMINLP)model.The validities of the proposed scheduling solution are illustrated through a case study.The scheduling results demonstrate that an optimal balance between multi-flow allocation,multi-parameter setting,and DRC coordinated operation is reached,which achieves 3.37%and 2.63%decreases in net energy input for same product output and conversion ratio,as well as the 1.56%decrease in energy loss ratio.
基金Funded by the National Natural Science Foundation as part of the"Research on the Development Route of China's Manufacturing Industry Based on Resource Constraints and Innovation"(70573045).
文摘The rebound effects of technological advancement on energy consumption make it very complicated to measure the impact of technological advancement on energy efficiency.This article,taking 35 industries as samples,utilizes the non-parameter DEA-Malmquist productivity approach to subcategorise technological advancement into three parts:science-technological(sci-tech)progress,pure technical efficiency and efficiency of scale.The panel technique is then used to work out each subcategory’s contribution to energy efficiency individually.Findings show that technological efficiency (calculated by multiplying the results of pure technical efficiency and scale efficiency)is the principal factor in the improvement of energy efficiency while the contribution from sci-tech progress is comparatively less.Overtime,however,the effect of sci-tech progress is gradually heightened while the effect of technical efficiency slowly diminishes.
文摘Green Internet of things (loT) has been heralded as the "next big thing" waiting to be realized in energy-efficient ubiquitous computing. Green IoT revolves around increased machine-to-machine communications and encompasses energy-efficient wireless embedded sensors and actuators that assist in monitoring and controlling home appliances. Energy efficiency in home applications can be achieved by better monitoring of the specific energy consumption by the appliances. There are many wireless standards that can be adopted for the design of such embedded devices in loT. These communication technologies cater to different requirements and are classified as the short-range and long-range ones. To select the best communication method, this paper surveys various loT communication technologies and discusses the advantages and disadvantages to develop an energy monitoring system. An IoT device based on the Wi-Fi technology system is developed and tested for usage in the home energy monitoring environment. The performance of this system is then evaluated by the measurement of power consumption metrics. In the efficient deep-sleep mode, the system saves up to 0.3 W per cycle with an average power dissipation of less than 0.1 W/s.
文摘As one of the national strategic emerging industries, new-energy-automobile industry has been caused people’s attention increasingly. Therefore, improving the new energy industry listing corporation performance, not only can alleviate the pressure on energy and the environment, but also can conducive to accelerating the transformation and upgrading of the automotive industry. Moreover, it can foster new economic point of growth and international competitiveness. This essay uses the super efficiency DEA model and Malmquist index method to analyze the performance of new-energy-automotive industry listing corporation. The data is from Year 2011 to 2013. Finally according to the conclusion of the empirical research, this paper made several suggestions to improve the operational efficiency of China’s new energy automobile enterprises and promote new energy-automobile industry.
文摘“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(decision making trial and evaluation laboratory,DEMATEL)与超效率数据包络分析(data envelopment analysis,DEA)模型的可再生能源发电技术综合效益评估方法。该方法分为投入-产出指标体系构建和综合评估2个阶段。首先,利用三角直觉模糊数处理模糊评价信息,将其与DEMATEL相结合量化各指标之间相互影响关系,基于指标间逻辑分析结果建立投入-产出评估指标体系。然后,基于超效率DEA模型对各可再生能源发电方案进行评估排序,结合投入冗余和产出不足分析结果给出各方案的针对性改善建议,以期为进一步选择和确定可再生能源产业发展战略提供参考。最后以某省10类可再生能源发电单元为研究对象,基于所提研究方法进行综合评估和分析,并与多准则妥协解排序法和熵权法进行对比分析,验证了所提方法的有效性。