Prediction of vibration energy responses of structures with uncertainties is of interest in many fields. The energy density control equation for one-dimensional structure is provided firstly. Interval analysis method ...Prediction of vibration energy responses of structures with uncertainties is of interest in many fields. The energy density control equation for one-dimensional structure is provided firstly. Interval analysis method is applied to the control equation to obtain the range of energy density responses of structures with interval parameters. A cantilever beam with interval-valued damping coefficient is exemplified to carry out a simulation. The result shows that the mean value of energy density from the interval analysis method is the same as that from a probabilistic method which validates the interval analysis method. Besides, the response range from the interval analysis method is wider and includes that from the probabilistic method which indicates the interval analysis method is a more conservative method and is safer in realistic engineering structures.展开更多
To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA)...To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA) is proposed to analyze vibro-acoustics responses with uncertainties at middle frequencies. The mid-frequency dynamic response of the framework-plate structure with uncertainties is studied based on the hybrid FE-SEA method and the Monte Carlo(MC)simulation is performed so as to provide a benchmark comparison with the hybrid method. The energy response of the framework-plate structure matches well with the MC simulation results, which validates the effectiveness of the hybrid FE-SEA method considering both the complexity of the vibro-acoustic structure and the uncertainties in mid-frequency vibro-acousitc analysis. Based on the hybrid method, a vibroacoustic model of a construction machinery cab with random properties is established, and the excitations of the model are measured by experiments. The responses of the sound pressure level of the cab and the vibration power spectrum density of the front windscreen are calculated and compared with those of the experiment. At middle frequencies, the results have a good consistency with the tests and the prediction error is less than 3. 5dB.展开更多
The coupling iteration (CI) of the finite element method(FEM) is used to simulate the magnetic and mechanical characteristics for a GMM actuator. The convergent ability under different prestress and different load typ...The coupling iteration (CI) of the finite element method(FEM) is used to simulate the magnetic and mechanical characteristics for a GMM actuator. The convergent ability under different prestress and different load types is investigated. Then the calculated deformations are compared with the experimental values. The results convince that the CI of FEM is suitable for the simulation of energy coupling and transformation mechanism of the GMM. At last, the output deformation properties are studied under different input currents, showing that there is a good compromise between good linearity and large strain under the prestress 6 MPa.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.11072066)
文摘Prediction of vibration energy responses of structures with uncertainties is of interest in many fields. The energy density control equation for one-dimensional structure is provided firstly. Interval analysis method is applied to the control equation to obtain the range of energy density responses of structures with interval parameters. A cantilever beam with interval-valued damping coefficient is exemplified to carry out a simulation. The result shows that the mean value of energy density from the interval analysis method is the same as that from a probabilistic method which validates the interval analysis method. Besides, the response range from the interval analysis method is wider and includes that from the probabilistic method which indicates the interval analysis method is a more conservative method and is safer in realistic engineering structures.
基金Science and Technology Support Planning of Jiangsu Province(No.BE2014133)the Open Foundation of Key Laboratory of Underw ater Acoustic Signal Processing(No.UASP1301)the Prospective Joint Research Project of Jiangsu province(No.BY2014127-01)
文摘To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA) is proposed to analyze vibro-acoustics responses with uncertainties at middle frequencies. The mid-frequency dynamic response of the framework-plate structure with uncertainties is studied based on the hybrid FE-SEA method and the Monte Carlo(MC)simulation is performed so as to provide a benchmark comparison with the hybrid method. The energy response of the framework-plate structure matches well with the MC simulation results, which validates the effectiveness of the hybrid FE-SEA method considering both the complexity of the vibro-acoustic structure and the uncertainties in mid-frequency vibro-acousitc analysis. Based on the hybrid method, a vibroacoustic model of a construction machinery cab with random properties is established, and the excitations of the model are measured by experiments. The responses of the sound pressure level of the cab and the vibration power spectrum density of the front windscreen are calculated and compared with those of the experiment. At middle frequencies, the results have a good consistency with the tests and the prediction error is less than 3. 5dB.
基金This project is supported by National Natural Science Foundation of China (No.50077019).
文摘The coupling iteration (CI) of the finite element method(FEM) is used to simulate the magnetic and mechanical characteristics for a GMM actuator. The convergent ability under different prestress and different load types is investigated. Then the calculated deformations are compared with the experimental values. The results convince that the CI of FEM is suitable for the simulation of energy coupling and transformation mechanism of the GMM. At last, the output deformation properties are studied under different input currents, showing that there is a good compromise between good linearity and large strain under the prestress 6 MPa.