New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us...New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turb...Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.展开更多
The heat transfer phenomena and driving forces of slag bath flow in ESR process were analyzed, and the mathematical models in ESR system were reviewed and evaluated. The electromagnetic force is the main driving force...The heat transfer phenomena and driving forces of slag bath flow in ESR process were analyzed, and the mathematical models in ESR system were reviewed and evaluated. The electromagnetic force is the main driving force for the flow formation in the ESR slag pool, and the temperature difference in the pool creates a convective flow in the system. The shape of the electrode tip has an effect on electromagnetic field distribution in slag pool, thus affects the flow pattern. Finally an improved mathematical model of slag pool flow was proposed.展开更多
The molten liquid flow inside a packed bed is a familiar momentum transportation phenomenon in a blast furnace. With regard to the reported mathematical models describing the liquid flow within a packed bed, there are...The molten liquid flow inside a packed bed is a familiar momentum transportation phenomenon in a blast furnace. With regard to the reported mathematical models describing the liquid flow within a packed bed, there are some obstacles for their application in engineering design, or some limitations in the model itself. To overcome these problems, the forces from the packed bed to the liquid flow were divided into appropriate body and surface forces on the basis of three assumptions. Consequently, a new mathematical model was built to present the liquid flow inside the coke bed in a blast furnace. The mathematical model can predict the distribution of liquid flowrate and the liquid flowing range inside the packed bed at any time. The predicted results of this model accord well with the experimental data. The model will be applied considerably better in the simulation on the ironmaking process compared with the existent models.展开更多
Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tra...Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.展开更多
Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous...Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.展开更多
In this paper, the subject of mathematical model is a series of math expressions, which is used to calculate different regions' volume fraction and analyze flow characterization in multi-strand tundish. But research ...In this paper, the subject of mathematical model is a series of math expressions, which is used to calculate different regions' volume fraction and analyze flow characterization in multi-strand tundish. But research about mathematical model for multi-strand tundish is few, and so far, there has been no acknowledged math model for multi- strand tundish to describe its flow characteristic. If Sahai's model, which is originally proposed for the case of single-strand tundish (proposed in reference, and this model is widely used in the world), is applied to describe flow feature in multi-strand tundish, the calculation results would be unreasonable. Based on the data of watermodel experiment results, the sum of each strand's dead region's volume fraction is bigger than 100%, and this obviously doesn'T agree with reality; and the value of dead region's volume fraction is calculated to be minus according to mathematical simulation results data in another case. What's more, Sahai's model does not propose the standard of plotting the RTD-curve, and this makes scholars around the world can't achieve consensus of views about plotting RTD-curve. And the model doesn't consider the bypass flow and can't calculate its volume fraction, but bypass flow is critical to tundish metallurgy. And through Sahai's model, the calculation result of plug flow region's volume fraction is also not reasonable, because the model doesn't well describe the essence of plug flow. So these suggest that it is not reliable to apply Sahai's single-strand tundish model to multi-strand tundish case. Then a new model is attempted to propose in this paper for your discussion. In the new model, the standard of plotting RTD curve is definitely proposed, and relative calculation method is also proposed; and the feature of dead region is carefully studied and the model proposes a new method to calculate its volume fraction, and the calculation formula about its volume fraction can be adjustable according the actual demand; what's more, the new model considers the bypass flow and proposes a method to calculate its volume fraction for the first time, and then volume fraction of plug flow region, backmix flow region, dead region and bypass flow can be calculated and obtained at the same time; and this new model can better capture the deviation of reality flow pattern from ideal plug flow pattern, and reflects the feature of plug flow.展开更多
The mathematical model of flow shear constitutive relation during rheo-rolling process has been established. The distribution of velocity and shear stress in rolling cavity was investigated, and the effects of process...The mathematical model of flow shear constitutive relation during rheo-rolling process has been established. The distribution of velocity and shear stress in rolling cavity was investigated, and the effects of process parameters on shear stress of Sn-15 Pb alloy during rheo-rolling process were studied. In rolling cavity, the nearer the roll is, the bigger the velocity and shear stress are. The shear stress increases with the increment of the roll speed and the roll radius during rheo-rolling process, but deceases with the increment of the thickness of the strip. When the solid fraction of Sn-15 Pb alloy increases from 0.3 to 0.5, the shear stress increases slowly, but when the solid fraction increases from 0.5 to 0.6, the shear stress rapidly.展开更多
By use of the two-component LDA and high speed camera,the water model of the flow field in metal bath under molten slag layer has been tested.On the basis of experimental results,the flow boundary conditions of liquid...By use of the two-component LDA and high speed camera,the water model of the flow field in metal bath under molten slag layer has been tested.On the basis of experimental results,the flow boundary conditions of liquid metal at the slag-metal interface of a gas injecting bath were deduced.The flow field and the turbulent parameters of the metal bath covered with slag were solved by the vorticity-stream function method.The results reveal that the flow velocity, turbulent energy and circulating rate of the melt under slag are lower than that of without slagcover.Another one “dead zone” of the lowest turbulent energy is formed in the top layer under cover of slag near the ladle linning.展开更多
The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn ...The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn (where, K1, K2, n1 andn2; K, n1 and n2; σ0, K and n are constant). The comparison of the maximum deviations and the consideration of thevariation of the work hardening rate with true strain show that the flow curves for the austenitic steels 304L and 304LN canbe described by the model σ=Kεn1+n2 lnε at higher precision.The derivatives of the models σ=K1εn1 + exp(K2 + n2ε) and σ=Kεn1+n2lnε with respect to true strain, exhibit theextreme at low true strain. This inherent character indicates that both models are unsuitable to describe the part of the workhardening rate curve at low true strain.展开更多
Intestinal infection has become a common disease in human and endoscopy can be a powerful means in diagnosis of intestinal illnesses. Mathematical models are developed for an inserted endoscope on the flow of chyme in...Intestinal infection has become a common disease in human and endoscopy can be a powerful means in diagnosis of intestinal illnesses. Mathematical models are developed for an inserted endoscope on the flow of chyme in the small intestine considering a Newtonian incompressible fluid flow, under an axisymmetric condition, in a cylindrical annulus between the small intestine and the endoscope. We obtain novel mathematical expressions for the pressure drop, forces exerted by the endoscope on the flow of chyme, and the force exerted by the chyme on the intestine for one wave length of the peristaltic rush wave. We also investigate and calculate the flow velocity and pressure for different flow rates and the wave lengths. The results are presented, and discussed for the cases and conditions under which pressure, pressure drop can be positive or negative and the forces can be acted either by the intestine or endoscope on the flow or vice-versa.展开更多
The effect of deformation conditions on dynamic recrystallization behavior of Nb,V,Ti microalloyed high-strength structural steel was investigated via high-temperature single pass reduction tests on a MMS-300 thermome...The effect of deformation conditions on dynamic recrystallization behavior of Nb,V,Ti microalloyed high-strength structural steel was investigated via high-temperature single pass reduction tests on a MMS-300 thermomechanical simulator,with mathematical models established for flow stress during hot deformation.The results show that the deformation resistance decreases with the increase of temperature and is in power function relationship with the temperature.Meanwhile,it increases with the increase of strain rate and is in log-log relationship with the strain rate.The dynamic recrystallization activation energy of tested steel was determined to be about 329.55 kJ/mol,295.31 kJ/mol at peak and steady states.The prediction models developed for flow stress indicated that they are in good agreement with experimental results.展开更多
In the modern tim e,cell phone reduces the cost of important inform a-tion,p lays a cruc ial role in both fac ilitate international and dom estic trades,as well as impacts the effic iency ofm ed ical service.Consider ...In the modern tim e,cell phone reduces the cost of important inform a-tion,p lays a cruc ial role in both fac ilitate international and dom estic trades,as well as impacts the effic iency ofm ed ical service.Consider a c ity and estim ate from ava ilab le data the numberH of house-holds,w ith m m embers each,that in the past were serviced by land lines.Now,suppose that som e land lines are rep laced by cell phones.W e model theconsequences of th is change for electric ity utilization in the c ity,during the...展开更多
Transport of suspensions and emulsions in porous media occurs in numerous processes of environmental, chemical, petroleum and civil engineering. In this work, a mass balance particle transport equation which includes ...Transport of suspensions and emulsions in porous media occurs in numerous processes of environmental, chemical, petroleum and civil engineering. In this work, a mass balance particle transport equation which includes filtration has been developed. The steady-state transport equation is presented and the solution to the complete advective-dispersion equation for particulate suspension flow has been derived for the case of a constant filter coefficient. This model in-cludes transport parameters which are particle advective velocity, particle longitudinal dispersion coefficient and filter coefficient. This work recommends to be investigated by particle longitudinal dispersion calculation from experimental data, directly. Besides, the numerical model needs to be developed for general case of a transition filter coefficient.展开更多
Based on the combined hydraulic calculation for the eastern network region at the Pearl River estuary and several outlets to the Lingdingyang Bay, the sediment calculation modelling was introduced in the establishment...Based on the combined hydraulic calculation for the eastern network region at the Pearl River estuary and several outlets to the Lingdingyang Bay, the sediment calculation modelling was introduced in the establishment of the sediment mathematical model for Lingdingyang Bay and the eastern region with one and two dimensional flow calculation. Model adjustment and verification were performed in conjunction with field data. The simulated results coincide well with measured data.In addition the model is applied to predict the shore-line planning scheme of Lingdingyang Bay.The theoretical criterion is provided for the shore line plan in the model.And a new mathematical simulated method is put out to research the planning engineering concerned with one-dimensional net rivers and two-dimensional estuary.展开更多
Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940’s. The traditional mathematical modelling is not available for complex structure converter...Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940’s. The traditional mathematical modelling is not available for complex structure converters since the differential equation order increases very high. We have to search other way to establish mathematical modelling for power DC/DC converters.We have theoretically defined a new concept-Energy Factor (EF) in this paper and researched the relations between EF and the mathematical modelling for power DC/DC converters. EF is a new concept in power DC/DC conversion technology, which thoroughly differs from the traditional concepts such as power factor (PF), power transfer efficiency (η), total harmonic distortion (THD) and ripple factor (RF). EF and the subsequential EFV (and EFVD) can illustrate the system stability, reference response and interference recovery. This investigation is very helpful for system design and DC/DC converters characteristics foreseeing. Two DC/DC converters: Buck converter and Super-Lift Luo-Converter as the samples are analysed in this paper to demonstrate the applications of EF, EFV (and EFVD), PE, SE, VE (and VED), time constant τ and damping time constant τd.展开更多
Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the di...Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the difficulty in modeling the flow pattern between two plates.Flow pattern was considered as laminar flow and full oil film in the gap between two plates in traditional model.Subsequent equivalent circumferential degree model presented an improvement in oil film shrinking due to centrifugal force,but was also based on full oil film in the gap,which resulted difference between model prediction and experimental data.The objective of this paper is to develop an accurate mathematical model for the above problem by using experimental verification.An experimental apparatus was set up to test drag torque of disengaged wet clutch consisting of single friction and separate plate.A high speed camera was used to record the flow pattern through transparent quartz disk plate.The visualization of flow pattern in the clearance was investigated to evaluate the characteristics of oil film shrinking.Visual test results reveal that the oil film begins to shrink from outer radius to inner radius at the stationary plate and only flows along the rotating plate after shrinking.Meanwhile,drag torque decreases sharply due to little contact area between the stationary plate and the oil.A three-dimensional Navier-Stokes (N-S) equation based on laminar flow is presented to model the drag torque.Pressure distributions in radial and circumferential directions as well as speed distributions are deduced.The model analysis reveals that the acceleration of flow in radial direction caused by centrifugal force is the key reason for the shrinking at the constant feeding flow rate.An approach to descript flow pattern was presented on the basis of visual observation.The drag torque predicted by the model agrees well with test data for non-grooved wet clutch.The proposed model enhances the precision for predicting drag torque,and lays down a framework on which some subsequent models are developed.展开更多
文摘New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
文摘Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.
基金Project Sponsored by National Nature Science Foundation(59674031)
文摘The heat transfer phenomena and driving forces of slag bath flow in ESR process were analyzed, and the mathematical models in ESR system were reviewed and evaluated. The electromagnetic force is the main driving force for the flow formation in the ESR slag pool, and the temperature difference in the pool creates a convective flow in the system. The shape of the electrode tip has an effect on electromagnetic field distribution in slag pool, thus affects the flow pattern. Finally an improved mathematical model of slag pool flow was proposed.
基金supported by the National Natural Science Foundation of China (No.50704040, 20805060)the Natural Science Foundation Project of Chongqing Science & Technology Commission, China (No.CSTC,2009BB4197)
文摘The molten liquid flow inside a packed bed is a familiar momentum transportation phenomenon in a blast furnace. With regard to the reported mathematical models describing the liquid flow within a packed bed, there are some obstacles for their application in engineering design, or some limitations in the model itself. To overcome these problems, the forces from the packed bed to the liquid flow were divided into appropriate body and surface forces on the basis of three assumptions. Consequently, a new mathematical model was built to present the liquid flow inside the coke bed in a blast furnace. The mathematical model can predict the distribution of liquid flowrate and the liquid flowing range inside the packed bed at any time. The predicted results of this model accord well with the experimental data. The model will be applied considerably better in the simulation on the ironmaking process compared with the existent models.
基金funded by National Science and Technology Major Projects(2017ZX05009004,2016ZX05058003)Beijing Natural Science Foundation(2173061)and State Energy Center for Shale Oil Research and Development(G5800-16-ZS-KFNY005).
文摘Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.
文摘Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.
基金supported by the National Natural Science Foundation of China(No.60672145)
文摘In this paper, the subject of mathematical model is a series of math expressions, which is used to calculate different regions' volume fraction and analyze flow characterization in multi-strand tundish. But research about mathematical model for multi-strand tundish is few, and so far, there has been no acknowledged math model for multi- strand tundish to describe its flow characteristic. If Sahai's model, which is originally proposed for the case of single-strand tundish (proposed in reference, and this model is widely used in the world), is applied to describe flow feature in multi-strand tundish, the calculation results would be unreasonable. Based on the data of watermodel experiment results, the sum of each strand's dead region's volume fraction is bigger than 100%, and this obviously doesn'T agree with reality; and the value of dead region's volume fraction is calculated to be minus according to mathematical simulation results data in another case. What's more, Sahai's model does not propose the standard of plotting the RTD-curve, and this makes scholars around the world can't achieve consensus of views about plotting RTD-curve. And the model doesn't consider the bypass flow and can't calculate its volume fraction, but bypass flow is critical to tundish metallurgy. And through Sahai's model, the calculation result of plug flow region's volume fraction is also not reasonable, because the model doesn't well describe the essence of plug flow. So these suggest that it is not reliable to apply Sahai's single-strand tundish model to multi-strand tundish case. Then a new model is attempted to propose in this paper for your discussion. In the new model, the standard of plotting RTD curve is definitely proposed, and relative calculation method is also proposed; and the feature of dead region is carefully studied and the model proposes a new method to calculate its volume fraction, and the calculation formula about its volume fraction can be adjustable according the actual demand; what's more, the new model considers the bypass flow and proposes a method to calculate its volume fraction for the first time, and then volume fraction of plug flow region, backmix flow region, dead region and bypass flow can be calculated and obtained at the same time; and this new model can better capture the deviation of reality flow pattern from ideal plug flow pattern, and reflects the feature of plug flow.
基金Funded by National Natural Science Foundation for Outstanding Young Scholars of China(No.51222405)National Natural Science Foundation of China(No.51474063)
文摘The mathematical model of flow shear constitutive relation during rheo-rolling process has been established. The distribution of velocity and shear stress in rolling cavity was investigated, and the effects of process parameters on shear stress of Sn-15 Pb alloy during rheo-rolling process were studied. In rolling cavity, the nearer the roll is, the bigger the velocity and shear stress are. The shear stress increases with the increment of the roll speed and the roll radius during rheo-rolling process, but deceases with the increment of the thickness of the strip. When the solid fraction of Sn-15 Pb alloy increases from 0.3 to 0.5, the shear stress increases slowly, but when the solid fraction increases from 0.5 to 0.6, the shear stress rapidly.
文摘By use of the two-component LDA and high speed camera,the water model of the flow field in metal bath under molten slag layer has been tested.On the basis of experimental results,the flow boundary conditions of liquid metal at the slag-metal interface of a gas injecting bath were deduced.The flow field and the turbulent parameters of the metal bath covered with slag were solved by the vorticity-stream function method.The results reveal that the flow velocity, turbulent energy and circulating rate of the melt under slag are lower than that of without slagcover.Another one “dead zone” of the lowest turbulent energy is formed in the top layer under cover of slag near the ladle linning.
文摘The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n2lnε and σ=σ0+Kεn (where, K1, K2, n1 andn2; K, n1 and n2; σ0, K and n are constant). The comparison of the maximum deviations and the consideration of thevariation of the work hardening rate with true strain show that the flow curves for the austenitic steels 304L and 304LN canbe described by the model σ=Kεn1+n2 lnε at higher precision.The derivatives of the models σ=K1εn1 + exp(K2 + n2ε) and σ=Kεn1+n2lnε with respect to true strain, exhibit theextreme at low true strain. This inherent character indicates that both models are unsuitable to describe the part of the workhardening rate curve at low true strain.
文摘Intestinal infection has become a common disease in human and endoscopy can be a powerful means in diagnosis of intestinal illnesses. Mathematical models are developed for an inserted endoscope on the flow of chyme in the small intestine considering a Newtonian incompressible fluid flow, under an axisymmetric condition, in a cylindrical annulus between the small intestine and the endoscope. We obtain novel mathematical expressions for the pressure drop, forces exerted by the endoscope on the flow of chyme, and the force exerted by the chyme on the intestine for one wave length of the peristaltic rush wave. We also investigate and calculate the flow velocity and pressure for different flow rates and the wave lengths. The results are presented, and discussed for the cases and conditions under which pressure, pressure drop can be positive or negative and the forces can be acted either by the intestine or endoscope on the flow or vice-versa.
文摘The effect of deformation conditions on dynamic recrystallization behavior of Nb,V,Ti microalloyed high-strength structural steel was investigated via high-temperature single pass reduction tests on a MMS-300 thermomechanical simulator,with mathematical models established for flow stress during hot deformation.The results show that the deformation resistance decreases with the increase of temperature and is in power function relationship with the temperature.Meanwhile,it increases with the increase of strain rate and is in log-log relationship with the strain rate.The dynamic recrystallization activation energy of tested steel was determined to be about 329.55 kJ/mol,295.31 kJ/mol at peak and steady states.The prediction models developed for flow stress indicated that they are in good agreement with experimental results.
文摘In the modern tim e,cell phone reduces the cost of important inform a-tion,p lays a cruc ial role in both fac ilitate international and dom estic trades,as well as impacts the effic iency ofm ed ical service.Consider a c ity and estim ate from ava ilab le data the numberH of house-holds,w ith m m embers each,that in the past were serviced by land lines.Now,suppose that som e land lines are rep laced by cell phones.W e model theconsequences of th is change for electric ity utilization in the c ity,during the...
文摘Transport of suspensions and emulsions in porous media occurs in numerous processes of environmental, chemical, petroleum and civil engineering. In this work, a mass balance particle transport equation which includes filtration has been developed. The steady-state transport equation is presented and the solution to the complete advective-dispersion equation for particulate suspension flow has been derived for the case of a constant filter coefficient. This model in-cludes transport parameters which are particle advective velocity, particle longitudinal dispersion coefficient and filter coefficient. This work recommends to be investigated by particle longitudinal dispersion calculation from experimental data, directly. Besides, the numerical model needs to be developed for general case of a transition filter coefficient.
文摘Based on the combined hydraulic calculation for the eastern network region at the Pearl River estuary and several outlets to the Lingdingyang Bay, the sediment calculation modelling was introduced in the establishment of the sediment mathematical model for Lingdingyang Bay and the eastern region with one and two dimensional flow calculation. Model adjustment and verification were performed in conjunction with field data. The simulated results coincide well with measured data.In addition the model is applied to predict the shore-line planning scheme of Lingdingyang Bay.The theoretical criterion is provided for the shore line plan in the model.And a new mathematical simulated method is put out to research the planning engineering concerned with one-dimensional net rivers and two-dimensional estuary.
文摘Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940’s. The traditional mathematical modelling is not available for complex structure converters since the differential equation order increases very high. We have to search other way to establish mathematical modelling for power DC/DC converters.We have theoretically defined a new concept-Energy Factor (EF) in this paper and researched the relations between EF and the mathematical modelling for power DC/DC converters. EF is a new concept in power DC/DC conversion technology, which thoroughly differs from the traditional concepts such as power factor (PF), power transfer efficiency (η), total harmonic distortion (THD) and ripple factor (RF). EF and the subsequential EFV (and EFVD) can illustrate the system stability, reference response and interference recovery. This investigation is very helpful for system design and DC/DC converters characteristics foreseeing. Two DC/DC converters: Buck converter and Super-Lift Luo-Converter as the samples are analysed in this paper to demonstrate the applications of EF, EFV (and EFVD), PE, SE, VE (and VED), time constant τ and damping time constant τd.
基金supported by National Defense Arming Pre-researching Project of China(Grant No.40402060102)
文摘Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the difficulty in modeling the flow pattern between two plates.Flow pattern was considered as laminar flow and full oil film in the gap between two plates in traditional model.Subsequent equivalent circumferential degree model presented an improvement in oil film shrinking due to centrifugal force,but was also based on full oil film in the gap,which resulted difference between model prediction and experimental data.The objective of this paper is to develop an accurate mathematical model for the above problem by using experimental verification.An experimental apparatus was set up to test drag torque of disengaged wet clutch consisting of single friction and separate plate.A high speed camera was used to record the flow pattern through transparent quartz disk plate.The visualization of flow pattern in the clearance was investigated to evaluate the characteristics of oil film shrinking.Visual test results reveal that the oil film begins to shrink from outer radius to inner radius at the stationary plate and only flows along the rotating plate after shrinking.Meanwhile,drag torque decreases sharply due to little contact area between the stationary plate and the oil.A three-dimensional Navier-Stokes (N-S) equation based on laminar flow is presented to model the drag torque.Pressure distributions in radial and circumferential directions as well as speed distributions are deduced.The model analysis reveals that the acceleration of flow in radial direction caused by centrifugal force is the key reason for the shrinking at the constant feeding flow rate.An approach to descript flow pattern was presented on the basis of visual observation.The drag torque predicted by the model agrees well with test data for non-grooved wet clutch.The proposed model enhances the precision for predicting drag torque,and lays down a framework on which some subsequent models are developed.