期刊文献+
共找到2,395篇文章
< 1 2 120 >
每页显示 20 50 100
Numerical Simulation of Heat Transfer Process and Heat Loss Analysis in Siemens CVD Reduction Furnaces
1
作者 Kunrong Shen Wanchun Jin Jin Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1361-1379,共19页
The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods in... The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition(CVD)reduction furnace were established,and the effects of factors such as the diameter of silicon rods,the surface temperature of silicon rods,the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation.The results show that the convective and radiant heat losses in the furnace increased with the diameter of the silicon rods.Furthermore,the radiant heat loss of the inner and outer rings of silicon rods was inconsistent for the industrial-grade reduction furnace.As the surface temperature of the silicon rods increases,the convective heat loss in the furnace increases,while the radiative heat loss remains relatively constant.When the inlet temperature and inlet velocity increase,the convective heat loss decreases,while the radiant heat loss remains relatively constant.Furthermore,the furnace wall surface emissivity increases,resulting in a significant increase in the amount of radiant heat loss in the furnace.In practice,this can be mitigated by polishing or adding coatings to reduce the furnace wall surface emissivity. 展开更多
关键词 Modified siemens method polysilicon reduction furnace energy consumption numerical simulation
下载PDF
Energy method and numerical simulation of critical backfillheight in non-pillar continuous mining 被引量:2
2
作者 邓建 古德生 +1 位作者 李夕兵 彭怀生 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第4期847-851,共5页
Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influenc... Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influence the loss rate and dilution rate, etc, will determine whether the experimental research is successful or not. By employing energy method of limit analysis and finite element numerical simulation method, the critical backfill height was determined under the prerequisite condition of its stability, which put forward theoretical basis for reasonable and correct selection of backfill’s parameters. The result showed that the first backfill could not keep stable for NPCM, while the other was able to. 展开更多
关键词 CONTINUOUS MINING CRITICAL HEIGHT energy method numerical simulation
下载PDF
NUMERICAL SIMULATION OF EXTRUSION OF COMPOSITE POWDERS PREPARED BY HIGH ENERGY MILLING 被引量:2
3
作者 X.Q.Li W.P.Chen +3 位作者 W.Xia Q.L.Zhu Y.Y.Li E.D.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期51-54,共4页
Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/... Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results. 展开更多
关键词 high energy milling composite powder plastic constitutive equation EXTRUSION numerical simulation
下载PDF
Numerical simulation of thermal process and energy saving of lime furnace 被引量:1
4
作者 易正明 周孑民 陈红荣 《Journal of Central South University of Technology》 2005年第3期295-299,共5页
Based on the principle of thermal balance and material balance of lime furnace, the reaction and heat transfer process mathematical-physical model and the on-line monitoring model of the decomposition rate of limeston... Based on the principle of thermal balance and material balance of lime furnace, the reaction and heat transfer process mathematical-physical model and the on-line monitoring model of the decomposition rate of limestone were set up. With this model, numerical simulation is used to analyze the effects of operational parameters on the process of lime calcining and to optimize it. By using visual basic program to communicate and program, the centralized management and automatic control of the lime furnace are realized. The software is put into practical production, which makes the lime furnace operate steadily and efficiently, and causes the increase in output and decrease in energy consumption. 展开更多
关键词 lime furnace thermal balance material balance numerical simulation energy saving
下载PDF
HIGH-RESOLUTION NUMERICAL SIMULATION OF WIND ENERGY RESOURCE IN HAINAN PROVINCE AND ITS OFFSHORE WATERS
5
作者 邢旭煌 朱蓉 +1 位作者 翟盘茂 俞卫 《Journal of Tropical Meteorology》 SCIE 2010年第3期292-298,共7页
With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed b... With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed by Meteorological Research Branch of Environment Canada. Compared with observations from eight coastal anemometric towers and 18 existing stations in the province, the simulations show good reproduction of the real distribution of wind resources in Hainan and over its offshore waters, with the relative error of annual mean wind speed being no more than 9% at the 70-m level. Moreover, based on the simulated results of WEST grids that are closest to where the eight wind towers are located, the annual mean wind speeds are further estimated by using the Danish software Wasp (Wind Atlas Analysis and Application Program). The estimated results are then compared with the observations from the towers. It shows that the relative error is also less than 9%. Therefore, WEST and WEST+WAsP will be useful tools for the assessment of wind energy resources in high resolution and selection of wind farm sites in Hainan province and over its offshore waters. 展开更多
关键词 wind energy resources Wind energy simulation Toolkit (WEST) wind speed high resolution numerical simulation
下载PDF
Model simulation of thermal environment and energy effects of rooftop distributed photovoltaics
6
作者 Hai Zhou Weidong Chen +1 位作者 Siyu Hu Fan Yang 《Global Energy Interconnection》 EI CSCD 2024年第6期723-732,共10页
Rooftop distributed photovoltaic(DPV)systems show promise for alleviating the energy crisis resulting from summer urban cooling demands and mitigating secondary hazards associated with urban heat islands.In this study... Rooftop distributed photovoltaic(DPV)systems show promise for alleviating the energy crisis resulting from summer urban cooling demands and mitigating secondary hazards associated with urban heat islands.In this study,a parametric scheme for rooftop DPVs was incorporated into the Weather,Research and Forecasting model.The period from August 12–16,2022,during a heatwave in Jiangsu Province,China,was selected as the weather background to simulate the impact of rooftop DPVs with varying power generation efficiencies on urban thermal environments and energy supply.The results indicate that(1)rooftop DPVs reduce urban air temperatures at 2 m by weakening the solar radiation reaching the surface.As solar panel efficiency improves,the cooling effects become more significant,particularly at night.Day and night air temperatures at 2 m can decrease by approximately 0.1°C–0.4°C and 0.2°C–0.7°C,respectively;(2)Installing rooftop DPVs can lower boundary layer temperatures,with pronounced cooling effects during the day(up to 0.7°C at 08:00)and night(up to 0.6°C at 20:00);(3)If all buildings are equipped with rooftop DPVs,the electricity generated could meet Jiangsu Province’s total electricity demand during heatwaves.With 30%generation efficiency and rooftop DPVs installed at 40%of buildings,the electricity produced can meet the entire electricity demand. 展开更多
关键词 Rooftop distributed photovoltaic systems Heat wave numerical simulation energy budget
下载PDF
AN ANALYSIS OF SUBGRID-RESOLVED SCALE INTERACTIONS WITH USE OF RESULTS FROM DIRECT NUMERICAL SIMULATIONS 被引量:2
7
作者 H. Gong S. Chen G.W. He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第2期108-115,共8页
Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics h... Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics have been investigated. It is observed that subgrid-subgrid interaction dominates the turbulent dynamics when cut-off wave number locates in the energy-containing range while resolved-subgrid interaction dominates if it is in the dissipation range. By decomposing the subgrid energy transfer and nonlinear interaction into ‘forward’ and ‘backward’ groups according to the sign of triadic interaction, we find that individually each group has very large contribution, but the net of them is much smaller, implying that tremendous cancellation happens between these two groups. 展开更多
关键词 subgrid nonlinear interaction energy transfer large eddy simulation (LES) subgrid scale (SGS) direct numerical simulation isotropic turbulence
下载PDF
Numerical Simulation of Wave Height and Wave Set-Up in Nearshore Regions 被引量:2
8
作者 郑永红 邱大洪 沈永明 《China Ocean Engineering》 SCIE EI 2001年第1期15-23,共9页
Based on the time dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation, and the... Based on the time dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation, and then a practical method for the simulation of wave height and wave set- up in nearshore regions is presented. The variation of the complex wave amplitude is numerically simulated by use of the parabolic mild slope equation including the effect of wave energy dissipation due to wave breaking. The components of wave radiation stress are calculated subsequently by new expressions for them according to the obtained complex wave amplitude, and then the depth-averaged equation is applied to the calculation of wave set-up due to wave breaking. Numerical results are in good agreement with experimental data, showing that the expression for the energy dissipation factor is reasonable and that the new method is effective for the simulation of wave set-up due to wave breaking in nearshore regions. 展开更多
关键词 wave energy dissipation wave set-up wave height associated with breaking mathematical model numerical simulation
下载PDF
Numerical Simulation of Basic Parameters in Plasma Spray 被引量:2
9
作者 范群波 王鲁 王富耻 《Journal of Beijing Institute of Technology》 EI CAS 2004年第1期80-84,共5页
On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, whi... On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, which can be directly calculated just by inputting the general spraying parameters, such as current, voltage, flow rates of gases, etc. Based on this method, the effects of plasma current and the flow rate of Ar on the basic parameters at the torch exit are discussed. The results show that the temperature, velocity and ionization degrees of gas species will increase with increasing the plasma current; while increasing Ar flow rate can increase the velocity at the exit but decrease the temperature and ionization degrees of plasma species. The method would be helpful to predict the temperature and velocity fields in a plasma jet in future, and direct the practical plasma spray operations. 展开更多
关键词 energy balance numerical simulation plasma spray
下载PDF
Numerical Simulation to Evaluate the Effects of Upward Lightning Discharges on Thunderstorm Electrical Parameters 被引量:2
10
作者 Tianxue ZHENG Yongbo TAN Yiru WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期446-459,共14页
A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced ch... A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C,and the average value is 19.0 C,while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9%to 47.3%,with an average value of 14.7%.Moreover,the average value of the space electrostatic energy consumed by upward lightning is 1.06×10^9 J.The above values are lower than those related to intracloud lightning discharges.The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area,and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength.In addition,these opposite-polarity charges are redistributed with the development of thunderstorms.The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm,and the complexity gradually decreases with the charge neutralization process. 展开更多
关键词 numerical simulation upward lightning induced charge variation of charge distribution electrostatic energy
下载PDF
Numerical Simulation of Multi-Directional Random Wave Transformation in a Yacht Port 被引量:3
11
作者 JI Qiaoling DONG Sheng +1 位作者 ZHAO Xizeng ZHANG Guowei 《Journal of Ocean University of China》 SCIE CAS 2012年第3期315-322,共8页
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and break... This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor. 展开更多
关键词 random wave diffraction energy balance equation numerical simulation yacht port
下载PDF
The Numerical Simulation on the PBL Structure and Its Evolution over Small-Scale Concave Terrain
12
作者 石勇 蒋维楣 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第1期100-107,共8页
A high resolution, nonhydrostatic, three dimensional diagnostic PBL model over small scale concave terrain was established in this paper. A two dimensional prognostic model was developed based on the diagnostic mo... A high resolution, nonhydrostatic, three dimensional diagnostic PBL model over small scale concave terrain was established in this paper. A two dimensional prognostic model was developed based on the diagnostic model. The hydrostatic approximation was abandoned and the simple energy ( E e ) closure scheme was used in both models. Using the two models, characteristics of PBL structure and its evolution were fully studied. The main characteristic of the PBL is the circulation, and it fairly affects the distribution of the pollutant in the pit. 展开更多
关键词 Small scale concave terrain NONHYDROSTATIC energy closure scheme PBL numerical simulation
下载PDF
Modeling and Numerical Simulation of Wings Effect on Turbulent Flow between Two Contra-Rotating Discs 被引量:1
13
作者 M. Raddaoui 《Journal of Energy and Power Engineering》 2011年第1期42-47,共6页
Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pa... Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pass by the comprehension and the modelling of turbulent flows. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numerically the effect of wings on the level of turbulence in the flow between two contra-rotating discs. We have fixed on these two discs eight wings uniformly distributed and we have varied the height of the wings to have eleven values from 0 to 18 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings. 展开更多
关键词 Turbulence control of energy WING MODELING numerical simulation contra-rotating discs Reynolds Stress Model source term.
下载PDF
Freak wave simulation based on nonlinear model and the research on the time-frequency energy spectrum of simulation results
14
作者 崔成 张宁川 李靖波 《Marine Science Bulletin》 CAS 2011年第1期25-39,共15页
VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been c... VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated. 展开更多
关键词 freak wave numerical simulation wavelet analysis varying water depthtime-frequency energy spectrum
下载PDF
Numerical Analysis of Doublet Wells for Cold Energy Storage on Heat Damage Treatment in Deep Mines 被引量:11
15
作者 HE Man-chao ZHANG Yi +1 位作者 GUO Dong-ming QIAN Zeng-zhen 《Journal of China University of Mining and Technology》 EI 2006年第3期278-282,共5页
Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Ma... Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Machine Systems (HEMSs), to store cold energy is a key to solve the heat damage problems in deep mines. Based on the geological conditions, thermodynamic and hydraulic parameters of Jiahe Mine, the isotherms in the period of cold energy storage and refrigeration and the volumes of cold water within different temperature ranges of the cold energy storage well were numerically analyzed. The results show that 1) with the same pumped and injected water volumes, the lower the temperature of injected water is, the larger the volume.of cold water in the cold energy storage well is. With the larger volume, the effect of cold energy storage is better. 2) the larger the volumes of pumped and reinjected water frigeration is better. And 3) without disturbance, the volume and temperature of cold water in the cold energy storage well can keep unchanged or have only a little change for a long time. Therefore the technology of doublet wells for cold energy storage is feasible and the cold energy storage aquifers can meet the requirement of the technology. 展开更多
关键词 deep mine heat damage treatment numerical simulation AQUIFER cold energy storage
下载PDF
Numerical Study on the Effect of Submerged Depth on the Horizontal Plate Wave Energy Converter 被引量:1
16
作者 Flávio Medeiros SEIBT Eduardo Costa COUTO +3 位作者 Elizaldo Domingues dos SANTOS Liércio André ISOLDI Luiz Alberto Oliveira ROCHA Paulo Roberto de Freitas TEIXEIRA 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期687-700,共14页
The growing search for clean and renewable energy sources has given rise to the studies of exploring sea wave energy. This paper is concerned with the numerical evaluation of the main operational principle of a submer... The growing search for clean and renewable energy sources has given rise to the studies of exploring sea wave energy. This paper is concerned with the numerical evaluation of the main operational principle of a submerged plate employed for the conversion of wave energy into electrical one. The numerical model used to solve the conservation equations of mass, momentum and transport of volume fraction is based on the finite volume method (FVM). In order to tackle with the flow of mixture of air-water and its interaction with the device, the multiphase model volume of fluid (VOF) is employed. The purpose of this study is the evaluation of a numerical model for improvement of the knowledge about the submerged plate wave energy converter, as well as the investigation of the effect of the distance from the plate to the bottom of the sea (HP) on the performance of the converter. The simulations for several distances of the plate from the seabed show that the optimal efficiency is 64%, which is obtained for HP=0.53 m (88% of the depth). This efficiency is 17% larger than that found in the worst case (HP=0.46 m, 77% of the depth). 展开更多
关键词 numerical simulation submerged plate wave energy conversion efficiency
下载PDF
Numerical Analysis of Energy Effect in Laser-TIG Hybrid Welding 被引量:1
17
作者 Yanbin CHEN Liqun LI Junfei FANG Xiaosong FENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期23-26,共4页
The hybrid source that combined CO2 laser with TIG arc to proceed welding was analyzed. Based on an energymodel, the temperature field and weld shape were calculated numerically. The heat transfer characteristic of th... The hybrid source that combined CO2 laser with TIG arc to proceed welding was analyzed. Based on an energymodel, the temperature field and weld shape were calculated numerically. The heat transfer characteristic of thehybrid heat source to workpiece and its effect to weld shape were also analyzed. Through analyzing the enhancementeffect of the hybrid heat source, the absorption effect and defocusing effect of the hybrid arc to laser were calculated,and the regularity of the energy density to the current was obtained subsequently. At last, the critical energy matchesto induce the enhancement effect of CO2 laser-TIG arc hybrid welding were obtained. 展开更多
关键词 Laser-TIG HYBRID welding energy effect numerical simulation
下载PDF
Theoretical and numerical study of hydraulic characteristics of orifice energy dissipator 被引量:1
18
作者 Ning HE Zhen-xing ZHAO 《Water Science and Engineering》 EI CAS 2010年第2期190-199,共10页
Different factors affecting the efficiency of the orifice energy dissipator were investigated based on a series of theoretical analyses and numerical simulations. The main factors investigated by dimension analysis we... Different factors affecting the efficiency of the orifice energy dissipator were investigated based on a series of theoretical analyses and numerical simulations. The main factors investigated by dimension analysis were identified, including the Reynolds number (Re), the ratio of the orifice diameter to the inner diameter of the pipe ( did ), and the ratio of distances between orifices to the inner diameter of the pipe ( LID ). Then, numerical simulations were conducted with a k-ε two-equation turbulence model. The calculation results show the following: Hydraulic characteristics change dramatically as flow passes through the orifice, with abruptly increasing velocity and turbulent energy, and decreasing pressure. The turbulent energy appears to be low in the middle and high near the pipe wall. For the energy dissipation setup with only one orifice, when Re is smaller than 105, the orifice energy dissipation coefficient K increases rapidly with the increase of Re. When Re is larger than l05, K gradually stabilizes. As diD increases, K and the length of the recirculation region L1 show similar variation patterns, which inversely vary with diD. The function curves can be approximated as straight lines. For the energy dissipation model with two orifices, because of different incoming flows at different orifices, the energy dissipation coefficient of the second orifice (K2) is smaller than that of the first. If LID is less than 5, the K value of the LID model, depending on the variation of/(2, increases with the spacing between two orifices L, and an orifice cannot fulfill its energy dissipation function. If LID is greater than 5, K2 tends to be steady; thus, the K value of the LID model gradually stabilizes. Then, the flow fully develops, and L has almost no impact on the value of K. 展开更多
关键词 orifice energy dissipator theoretical analysis numerical simulation k-ε two-equation turbulent model hydraulic characteristics
下载PDF
A Numerical Study on Piezoelectric Energy Harvesting by Combining Transverse Galloping and Parametric Instability Phenomena
19
作者 Guilherme Rosa Franzini Rebeca Caramêz Saraiva Santos Celso Pupo Pesce 《Journal of Marine Science and Application》 CSCD 2017年第4期465-472,共8页
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for thi... This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation(i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation. 展开更多
关键词 TRANSVERSE GALLOPING energy HARVESTING PIEZOELECTRICITY PARAMETRIC INSTABILITY numerical simulations
下载PDF
Simulation and Optimization of a Double-Helical Rotor Wave Energy Converter
20
作者 Xinhui Chen Hongzhou He Pengyuan Sun 《Journal of Marine Science and Application》 CSCD 2022年第3期155-169,共15页
This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the risi... This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the rising and falling energy of a wave.The rotors are simulated and optimized by Fluent.Each rotor’s blades are simulated and analyzed,which are separately changed in terms of helix angle,shape,and thickness.The simulation result shows that,for both inner and outer helical rotors,the energy harvesting efficiency is the highest when the blade helix angle is 45°.Triangular blades have better hydrodynamic performance than square and circular blades.The energy harvesting efficiency of 15 mm thick blades is higher than that of 75 mm thick blades. 展开更多
关键词 Sustainable energy Wave energy Double-helical rotor WEC Structural optimization numerical simulation
下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部