In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Impr...In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.展开更多
The purpose of this article was to analyze data associated with advances in wind energy across the United States. While governments, academia, and the private sector generally know patterns of wind turbine development...The purpose of this article was to analyze data associated with advances in wind energy across the United States. While governments, academia, and the private sector generally know patterns of wind turbine development (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> turbine size and capacity growing in recent years), there is no known independent, reliable, and/or updated summary of these variables. Using data collected by the Lawrence Berkeley National Laboratory and partners, this study used descriptive statistics to show turbine development and growth patterns from </span><span style="font-family:Verdana;">1981-2019. The newly created United States Wind Turbine Database (USWTDB</span><span style="font-family:Verdana;">) represents the most comprehensive account of wind turbine information and was updated in January 2020. Variables I am interested in here are turbine manufacturer, state of project, turbine and project capacity, and turbine size. Findings provide empirical evidence to support the common, yet previously unrefined statements that wind turbines are growing larger in number, size and capacity. This growth is varied over spatial and temporal scales. I also provide evidence to show patterns of turbine manufacturing, with GE Wind dominating much of the US wind energy landscape today. I hope this work provides a timely resource for those interested in a variety of questions surrounding wind energy development in the United States. Perhaps more importantly, this analysis will hopefully inspire others to use what the USWTDB provides and answer larger questions surrounding wind energy futures.展开更多
基金supported by National Key R&D Program of China (No. 2018YFB0905000)Science and Technology Project of SGCC (SGTJDK00DWJS1800232)+1 种基金National Natural Science Foundation of China (51977141)State Grid Corporation of China project: “Research on Construction Technology of Integrated Energy System for Urban Multifunctional Groups” (SGTJJY00GHJS1900040)
文摘In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.
文摘The purpose of this article was to analyze data associated with advances in wind energy across the United States. While governments, academia, and the private sector generally know patterns of wind turbine development (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> turbine size and capacity growing in recent years), there is no known independent, reliable, and/or updated summary of these variables. Using data collected by the Lawrence Berkeley National Laboratory and partners, this study used descriptive statistics to show turbine development and growth patterns from </span><span style="font-family:Verdana;">1981-2019. The newly created United States Wind Turbine Database (USWTDB</span><span style="font-family:Verdana;">) represents the most comprehensive account of wind turbine information and was updated in January 2020. Variables I am interested in here are turbine manufacturer, state of project, turbine and project capacity, and turbine size. Findings provide empirical evidence to support the common, yet previously unrefined statements that wind turbines are growing larger in number, size and capacity. This growth is varied over spatial and temporal scales. I also provide evidence to show patterns of turbine manufacturing, with GE Wind dominating much of the US wind energy landscape today. I hope this work provides a timely resource for those interested in a variety of questions surrounding wind energy development in the United States. Perhaps more importantly, this analysis will hopefully inspire others to use what the USWTDB provides and answer larger questions surrounding wind energy futures.