期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of Maturation of Radio-Cephalic Arteriovenous Fistula Using a Model Relating Energy Loss Rate and Vascular Geometric Parameters 被引量:1
1
作者 Yang Yang Nellie Della Schiava +4 位作者 Pascale Kulisa Mahmoud El Hajem Benyebka Bou-Saïd Serge Simoëns Patrick Lermusiaux 《Journal of Biomedical Science and Engineering》 2021年第6期271-287,共17页
<span style="font-family:Verdana;">The main reason for the early failure of radio-cephalic arteriovenous fistula (RCAVF) is non-maturity, which means that the blood flow rate in the fistula cannot incr... <span style="font-family:Verdana;">The main reason for the early failure of radio-cephalic arteriovenous fistula (RCAVF) is non-maturity, which means that the blood flow rate in the fistula cannot increase to the expected value for dialysis. From a mechanical perspective, the vascular resistance at the artificially designed anastomosis causes an energy loss that affects blood flow rate growth and leads to early failure. This research studied how to maximize the RCAVF maturity and primary patency by controlling the energy loss rate. We theoretically analyzed and derived a model that evaluates the energy loss rate <em>E</em><sub><em>avf</em></sub> in RCAVF as a function of its blood vessel geometric parameters (GPs) for given flow rates. There was an aggregate of five controllable GPs in RCAVF: radial artery diameter (<em>D</em><sub><em>ra</em></sub>), cephalic vein diameter (<em>D</em><sub><em>cv</em></sub>), blood vessel distance between artery and vein (<em>h</em>), anastomotic diameter (<em>D</em><sub><em>a</em></sub>), and anastomotic angle (<em>θ</em>). Through this analysis, it was found that <em>E</em><sub><em>avf</em></sub> was inversely proportional to <em>D</em><sub><em>ra</em></sub>, <em>D</em><sub><em>cv</em></sub>, <em>D</em><sub><em>a</em></sub>, and <em>θ</em>, whereas proportional to <em>h</em>. Therefore, we recommended surgeons choose the vessels with large diameters, close distance, and increase the diameter and angle of the anastomosis to decrease the early failure of RCAVF. Simultaneously, we could explain the results of many clinical empiricisms with our formula. We found that increasing <em>D</em><sub><em>cv</em></sub> and <em>θ</em> was more significant in reducing <em>E</em><sub><em>avf</em></sub> than increasing <em>D</em><sub><em>ra</em></sub> and <em>D</em><sub><em>a</em></sub>. Based on our model, we could define two critical energy loss rates (<em>CEL</em><sub><em>a</em></sub>, <em>CEL</em><sub><em>b</em></sub>) to help surgeons evaluate the blood vessels and choose the ideal range of <em>θ</em>, and help them design the preoperative RCAVF plan for each patient to increase the maturity and the primary patency of RCAVF.</span> 展开更多
关键词 HEMODIALYSIS Radio-Cephalic Arteriovenous Fistula (RCAVF) Critical energy loss rate (CEL) Vessel Geometric Parameters MATURITY
下载PDF
Role of neutrino form factors in the energy loss rates of the pair annihilation process
2
作者 C.Aydin 《Chinese Physics C》 SCIE CAS CSCD 2022年第7期68-73,共6页
The stellar energy loss rates due to the production of neutrino pairs e^(+)e^(-) → (W, Z, γ) → veve are calculated using the minimal extension of the Standard Model with the electromagnetic properties of the Dirac ... The stellar energy loss rates due to the production of neutrino pairs e^(+)e^(-) → (W, Z, γ) → veve are calculated using the minimal extension of the Standard Model with the electromagnetic properties of the Dirac neutrinos, which takes the contributions of the neutrino charge radius, anapole moment, and dipole moments into account. We show that the contribution of the electron neutrino's dipole moment is small compared with that of the charge radius. The obtained results are also compared with the results obtained using the Standard Model. 展开更多
关键词 NEUTRINOS form factors energy loss rates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部