This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbin...This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.展开更多
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith...Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.展开更多
Energy storage is one of the key means for improving the flexibility,economy and security of power system.It is also important in promoting new energy consumption and the energy Internet.Therefore,energy storage is ex...Energy storage is one of the key means for improving the flexibility,economy and security of power system.It is also important in promoting new energy consumption and the energy Internet.Therefore,energy storage is expected to support distributed power and the micro-grid,promote open sharing and flexible trading of energy production and consumption,and realize multi-functional coordination.In recent years,with the rapid development of the battery energy storage industry,its technology has shown the characteristics and trends for large-scale integration and distributed applications with multi-objective collaboration.As a grid-level application,energy management systems(EMS)of a battery energy storage system(BESS)were deployed in real time at utility control centers as an important component of power grid management.Based on the analysis of the development status of a BESS,this paper introduced application scenarios,such as reduction of power output fluctuations,agreement to the output plan at the renewable energy generation side,power grid frequency adjustment,power flow optimization at the power transmission side,and a distributed and niohile energy storage system at the power distribution side.The studies and application status of a BESS in recent years were reviewed.The energy management,operation control methods,and application scenes of large-scale BESSs were also examined in the study.展开更多
This paper uses the minimization and weighted sum of battery capacity loss and energy consumption under driving cycles as objective functions to improve the economy of Electric Vehicles(EVs)with an hybrid energy stora...This paper uses the minimization and weighted sum of battery capacity loss and energy consumption under driving cycles as objective functions to improve the economy of Electric Vehicles(EVs)with an hybrid energy storage system composed of power batteries and ultracapacitors.Furthermore,Dynamic Programming(DP)is employed to determine the objective function values under different weight coefficients,the comprehensive cost consisting of battery aging and power consumption costs,and the relationship between the hybrid power distribution.We also evaluate the real-time fuzzy Energy Management Strategy(EMS),fuzzy control strategies,and a strategy based on DP using the World Light vehicle Test Procedure(WLTP)driving cycle and a synthesis driving cycle derived from New European Driving Cycle(NEDC),WLTP,and Urban Dynamometer Driving Schedule(UDDS)as examples.Then,the proposed strategy is compared with the fuzzy control strategy and the strategy based on DP.Compared with fuzzy energy management strategy(namely FZY-EMS),the proposed EMS reduces the battery capacity loss and system energy consumption.The results demonstrate the effectiveness of the proposed EMS in improving EV economy.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
Among hybrid energy storage systems(HESSs),battery-ultracapacitor systems in active topology use DC/DC power converters for their operations.HESSs are part of the solutions designed to improve the operation of power s...Among hybrid energy storage systems(HESSs),battery-ultracapacitor systems in active topology use DC/DC power converters for their operations.HESSs are part of the solutions designed to improve the operation of power systems in different applications.In the residential microgrid applications,a multilevel control system is required to manage the available energy and interactions among the microgrid components.For this purpose,a rule-based power management system is designed,whose operation is validated in the simulation,and the performances of different controllers are compared to select the best strategy for the DC/DC converters.The average current control with internal model control and real-time frequency decoupling is proposed as the most suitable controller according to the contemplated performance parameters,allowing voltage regulation values close to 1%.The results are validated using real-time hardware-in-the-loop(HIL).These systems can be easily adjusted for other applications such as electric vehicles.展开更多
基金supported by the National Science Foundation of China under Grant No.51205046
文摘This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.
基金This project is supported by Electric Vehicle Key Project of National 863 Program of China (No.2001AA501200, 2001AA501211).
文摘Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.
基金supported by the Science and Technology Project of State Grid Corporation of China(DG71-18-009):Intelligent coordination control and energy optimization management of super-large scale battery energy storage power station based on information physics fusion。
文摘Energy storage is one of the key means for improving the flexibility,economy and security of power system.It is also important in promoting new energy consumption and the energy Internet.Therefore,energy storage is expected to support distributed power and the micro-grid,promote open sharing and flexible trading of energy production and consumption,and realize multi-functional coordination.In recent years,with the rapid development of the battery energy storage industry,its technology has shown the characteristics and trends for large-scale integration and distributed applications with multi-objective collaboration.As a grid-level application,energy management systems(EMS)of a battery energy storage system(BESS)were deployed in real time at utility control centers as an important component of power grid management.Based on the analysis of the development status of a BESS,this paper introduced application scenarios,such as reduction of power output fluctuations,agreement to the output plan at the renewable energy generation side,power grid frequency adjustment,power flow optimization at the power transmission side,and a distributed and niohile energy storage system at the power distribution side.The studies and application status of a BESS in recent years were reviewed.The energy management,operation control methods,and application scenes of large-scale BESSs were also examined in the study.
基金supported by the National Key Research and Development Program of China(No.2020YFB1600400)the Scientific Research Project of the Department of Transport of Shaanxi Province(No.18-27R).
文摘This paper uses the minimization and weighted sum of battery capacity loss and energy consumption under driving cycles as objective functions to improve the economy of Electric Vehicles(EVs)with an hybrid energy storage system composed of power batteries and ultracapacitors.Furthermore,Dynamic Programming(DP)is employed to determine the objective function values under different weight coefficients,the comprehensive cost consisting of battery aging and power consumption costs,and the relationship between the hybrid power distribution.We also evaluate the real-time fuzzy Energy Management Strategy(EMS),fuzzy control strategies,and a strategy based on DP using the World Light vehicle Test Procedure(WLTP)driving cycle and a synthesis driving cycle derived from New European Driving Cycle(NEDC),WLTP,and Urban Dynamometer Driving Schedule(UDDS)as examples.Then,the proposed strategy is compared with the fuzzy control strategy and the strategy based on DP.Compared with fuzzy energy management strategy(namely FZY-EMS),the proposed EMS reduces the battery capacity loss and system energy consumption.The results demonstrate the effectiveness of the proposed EMS in improving EV economy.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-
基金the EMC-UN Lab,the LIFAE-UD Lab and the EnergyVille Institute with support from Universidad Nacional de Colombia。
文摘Among hybrid energy storage systems(HESSs),battery-ultracapacitor systems in active topology use DC/DC power converters for their operations.HESSs are part of the solutions designed to improve the operation of power systems in different applications.In the residential microgrid applications,a multilevel control system is required to manage the available energy and interactions among the microgrid components.For this purpose,a rule-based power management system is designed,whose operation is validated in the simulation,and the performances of different controllers are compared to select the best strategy for the DC/DC converters.The average current control with internal model control and real-time frequency decoupling is proposed as the most suitable controller according to the contemplated performance parameters,allowing voltage regulation values close to 1%.The results are validated using real-time hardware-in-the-loop(HIL).These systems can be easily adjusted for other applications such as electric vehicles.