With the full treatment of the Helfrich model we theoretically study the symmetrical adhesion of two cylindrical colloids to a tubular membrane. The adhesion of the rigid cylinders with different radius from the membr...With the full treatment of the Helfrich model we theoretically study the symmetrical adhesion of two cylindrical colloids to a tubular membrane. The adhesion of the rigid cylinders with different radius from the membrane tube surface can produce both shallow wrapping with relatively small wrapping angle and deep wrapping with big wrapping angle. These significant structural behaviors can be obtained by analyzing the system energy. A second order adhesion transition from the desorbed to weakly adhered states is found, and a first order phase transition where the cylindrical colloids undergo an abrupt transition from weakly adhered to strongly adhered states can be obtained as well.展开更多
We incorporated a superheated steam blanching pretreatment step into a paprika drying process and compared the far-infrared(FIR)drying rates,hardness of the sample surfaces,cell membrane stabilities,and energy consump...We incorporated a superheated steam blanching pretreatment step into a paprika drying process and compared the far-infrared(FIR)drying rates,hardness of the sample surfaces,cell membrane stabilities,and energy consumption of blanched and non-blanched paprika.The average drying rate of blanched paprika samples during FIR drying was higher than that of non-blanched samples.The hardness and cell membrane stability of dried blanched samples were lower than those of non-blanched samples.We estimated that the softening of the sample surfaces and injury to the cell membranes caused the drying rate to increase.The total energy consumption of the FIR drying of paprika was reduced by approximately 30%by introducing the blanching pretreatment.These findings contribute to the development of environmentally friendly FIR drying techniques for paprika.展开更多
To further detem3ine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal p...To further detem3ine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane-BSA and BSA BSA, respectively. Results showed that the membrane-BSA adhesion interaction was stronger than the BSA-BSA adhesion interaction, and the adhesion force between BSA-BSA-fouled PVDF/PVA membranes was similar to that between BSA-BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane-BSA adhesion force was smaller than that of PVDF/ PVP membrane-BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin-Landau-Verwey Overbeek (XDLVO) theory predicts that the polar or Lewis acid-base (AB) interaction played a dominant role in the interracial free energy ofmcmbrane-BSA and BSA BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11074151)the National Key Basic Research and Development Program of China(Grant No.2011CB808100)
文摘With the full treatment of the Helfrich model we theoretically study the symmetrical adhesion of two cylindrical colloids to a tubular membrane. The adhesion of the rigid cylinders with different radius from the membrane tube surface can produce both shallow wrapping with relatively small wrapping angle and deep wrapping with big wrapping angle. These significant structural behaviors can be obtained by analyzing the system energy. A second order adhesion transition from the desorbed to weakly adhered states is found, and a first order phase transition where the cylindrical colloids undergo an abrupt transition from weakly adhered to strongly adhered states can be obtained as well.
基金JSPS KAKENHI,grant number JP16H05001[Grant-in-Aid for Scientific Research(B)]JP17K08015[Grant-in-Aid for Scientific Research(C)]。
文摘We incorporated a superheated steam blanching pretreatment step into a paprika drying process and compared the far-infrared(FIR)drying rates,hardness of the sample surfaces,cell membrane stabilities,and energy consumption of blanched and non-blanched paprika.The average drying rate of blanched paprika samples during FIR drying was higher than that of non-blanched samples.The hardness and cell membrane stability of dried blanched samples were lower than those of non-blanched samples.We estimated that the softening of the sample surfaces and injury to the cell membranes caused the drying rate to increase.The total energy consumption of the FIR drying of paprika was reduced by approximately 30%by introducing the blanching pretreatment.These findings contribute to the development of environmentally friendly FIR drying techniques for paprika.
文摘To further detem3ine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane-BSA and BSA BSA, respectively. Results showed that the membrane-BSA adhesion interaction was stronger than the BSA-BSA adhesion interaction, and the adhesion force between BSA-BSA-fouled PVDF/PVA membranes was similar to that between BSA-BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane-BSA adhesion force was smaller than that of PVDF/ PVP membrane-BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin-Landau-Verwey Overbeek (XDLVO) theory predicts that the polar or Lewis acid-base (AB) interaction played a dominant role in the interracial free energy ofmcmbrane-BSA and BSA BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.