I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for th...I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-展开更多
This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a ...This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.展开更多
Aiming at the problem of insufficient endurance performance of flapping wing aircraft,a stable attitude control algorithm based on energy optimization and ESO(extended state observer)is designed,which effectively redu...Aiming at the problem of insufficient endurance performance of flapping wing aircraft,a stable attitude control algorithm based on energy optimization and ESO(extended state observer)is designed,which effectively reduces the energy consumption in cruise phase.Firstly,the longitudinal dynamic model of flapping wing aircraft is established,and then the uncertain part of the system and various unknown external disturbances are taken as the total disturbance.ESO module is introduced to observe and track the total disturbance in real time.Therefore,the system is transformed into a series integral system through the total disturbance feedback,and then the energy optimal control law is designed on the base of the transformed system.The numerical simulation results show that,compared with the traditional PID control method,the designed energy optimal control method reduces the average energy consumption by 35.28%.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
文摘I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-
文摘This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.
文摘Aiming at the problem of insufficient endurance performance of flapping wing aircraft,a stable attitude control algorithm based on energy optimization and ESO(extended state observer)is designed,which effectively reduces the energy consumption in cruise phase.Firstly,the longitudinal dynamic model of flapping wing aircraft is established,and then the uncertain part of the system and various unknown external disturbances are taken as the total disturbance.ESO module is introduced to observe and track the total disturbance in real time.Therefore,the system is transformed into a series integral system through the total disturbance feedback,and then the energy optimal control law is designed on the base of the transformed system.The numerical simulation results show that,compared with the traditional PID control method,the designed energy optimal control method reduces the average energy consumption by 35.28%.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-