Under the background of new urbanization, rural buildings' energy efficiency retrofit is an essential part of the overall work of the building energy conservation. Therefore, taking rural buildings in hot-summer and ...Under the background of new urbanization, rural buildings' energy efficiency retrofit is an essential part of the overall work of the building energy conservation. Therefore, taking rural buildings in hot-summer and cold-winter zone as the research object, we carried out field investigation by combining geographical climate charactedstics with social-economic conditions and analyzed the energy consumption and energy conservation of rural buildings in hot-summer and cold-winter zone. On the basis of the investigation and analysis, this paper pointed out the questions with its energy efficiency retrofit and proposed the energy-saving strategy which was suitable for rural buildings in hot-summer and cold-winter zone based on people's livelihood and development.展开更多
In Turkey, most of the common type projects of mass production residential buildings are being developed and constructed by TOK1 (Housing Development Administration of Turkey). These buildings, in which energy effic...In Turkey, most of the common type projects of mass production residential buildings are being developed and constructed by TOK1 (Housing Development Administration of Turkey). These buildings, in which energy efficient approach has been disregarded for years, cause to gradually increase on heating and cooling energy consumptions. In regards to national economics, it is essential to evaluate energy efficiency and to develop suggestions to decrease energy consumptions in residential buildings. To achieve appropriate solutions, cost evaluation also becomes necessary. Therefore, this paper aims to introduce a study which serves the purpose of producing a choice of energy efficient solutions in order to reduce energy consumptions and energy cost. In this study, different heating and cooling energy efficient scenarios have been developed for a selected residential building, constructed by TOKI, for climatic zones of Turkey. For each scenario, energy simulations have been executed by means of the simulation program--DesignBuilder, the user-friendly visual interface of EnergyPlus, and cost analysis has been carried out by using the net present value and discounted payback period method. As a result, energy and cost effective solutions have been presented and discussed for different climatic zones.展开更多
According to the recent policies regarding energy use in buildings and the need of retrofit strategies,the aim of this work is to support policies concerning the installation of ground source heat exchangers in urban ...According to the recent policies regarding energy use in buildings and the need of retrofit strategies,the aim of this work is to support policies concerning the installation of ground source heat exchangers in urban and historical areas,raising the awareness on the potential energy saving achievable with optimal sizing and limited impact on the urban environment.Archetypes have been developed distinguishing among existing and historic buildings,focusing on single-family terrace houses,which are the typical residential buildings in European historic centres.A methodology for the optimal sizing of ground source heat pumps,eventually considering dual-source system or air system has been developed combining simulations of a photovoltaic system to estimate the self-sufficiency and the self-consumption for five orientations of the building.Extreme results have been obtained for warm cli-mates,with negligible heating energy demand and possibly free cooling systems rather than traditional cooling systems needed in wintertime.Penalty temperature was acceptable despite unbalanced energy demands.With proper inclination,photovoltaic systems could provide up to 40%of self-sufficiency share also in northern cli-mates.An energy-economic analysis was carried out obtaining a variety of cases representing a general overview of the European building stock and the potential benefits achievable in terms of renewable energy share,energy savings and economic investments needed to be extended to simulations at urban scale.展开更多
A major roadblock in achieving substantial building energy reduction is the low performance of old buildings that account for a significant portion of the building energy consumption.Finding low-cost energy retrofit s...A major roadblock in achieving substantial building energy reduction is the low performance of old buildings that account for a significant portion of the building energy consumption.Finding low-cost energy retrofit solutions that do not disrupt occupants’daily life during the retrofitting is the key to successful building energy retrofit initiatives.In this paper,a novel and low-cost exterior wall retrofitting solution is introduced,and its performance in reducing space cooling load was quantitatively evaluated to demonstrate its feasibility and effectiveness.The primary goal of this paper is to provide a quantitative assessment of the cooling-energy savings potential by using the proposed new wall system.The intended retrofitting targets are the large amount of existing cavity-wall buildings located in hot climate regions.The quantification of the before-after heat-flux reduction was conducted through a 3-dimensional steady-state low turbulence computational fluid dynamics(CFD)model,which is validated by benchmarking its prediction against the published experimental case results.The outcomes of the investigation suggest that this simple low-cost solution has great potentials in reducing buildings’summer cooling load in hot climate regions.The applicability of this solution is not limited to retrofitting existing buildings.New energy-efficient building designs can also adopt this solution in their envelope systems.展开更多
Quantifying the energy savings of various energy efficiency measures(EEMs)for an energy retrofit project often necessitates an energy audit and detailed whole building energy modeling to evaluate the EEMs;however,this...Quantifying the energy savings of various energy efficiency measures(EEMs)for an energy retrofit project often necessitates an energy audit and detailed whole building energy modeling to evaluate the EEMs;however,this is often cost-prohibitive for small and medium buildings.In order to provide a defined guideline for projects with assumed common baseline characteristics,this paper applies a sensitivity analysis method to evaluate the impact of individual EEMs and groups these into packages to produce deep energy savings for a sample prototype medium office building across 15 climate zones in the United States.We start with one baseline model for each climate zone and nine candidate EEMs with a range of efficiency levels for each EEM.Three energy performance indicators(EPIs)are defined,which are annual electricity use intensity,annual natural gas use intensity,and annual energy cost.Then,a Standard Regression Coefficient(SRC)sensitivity analysis method is applied to determine the sensitivity of each EEM with respect to the three EPIs,and the relative sensitivity of all EEMs are calculated to evaluate their energy impacts.For the selected range of efficiency levels,the results indicate that the EEMs with higher energy impacts(i.e.,higher sensitivity)in most climate zones are high-performance windows,reduced interior lighting power,and reduced interior plug and process loads.However,the sensitivity of the EEMs also vary by climate zone and EPI;for example,improved opaque envelope insulation and efficiency of cooling and heating systems are found to have a high energy impact in cold and hot climates.展开更多
The paper is based on the results of two research experiences: an European research titled "Improving the Quality of Suburban Building Stock" (COST Action TU0701 ) and an Italian National Research project called ...The paper is based on the results of two research experiences: an European research titled "Improving the Quality of Suburban Building Stock" (COST Action TU0701 ) and an Italian National Research project called "Renovation, Regeneration and Valorization of Social Housing Settlements Built in the Suburban Areas in the Second Half of Last Century" (PRIN 2010-2012). The paper summarizes the researches outputs whose main aim was to illustrate the potentialities of different strategies for the improvement of suburbs. In order to implement different strategies for the refurbishment of suburban areas, researches were aimed firstly at the identification of several case studies that are representatives of the European panorama because of their typology, construction and state of physical and social deterioration. The final result was a collection of examples for the urban regeneration, gathered from case studies but offering a wide-scale of applications on public housing complexes. The paper highlights different approaches and strategies taken by different countries towards the methodologies of assessing, refurbishing and adding new value to the suburban areas, in view of increasing not only the quality of buildings but also the quality of public spaces and services, for a better quality of life of the citizens.展开更多
Government buildings are responsible for a significant proportion of energy consumption worldwide,for example, in Australia, up to 41.5 PJ energy was consumed by government buildings in 2011–2012. While the newly con...Government buildings are responsible for a significant proportion of energy consumption worldwide,for example, in Australia, up to 41.5 PJ energy was consumed by government buildings in 2011–2012. While the newly constructed buildings may be energy efficient,the existing buildings, which account for more than 85% of the total building stock, were built prior to the time when energy rating systems was put in practice and are consequently energy inefficient to a large degree. Reducing the energy consumption in existing government buildings is essential, as it will not only reduce the costs and environmental impacts, but also show governments' strong commitment towards the reduction of greenhouse gas emission. Furthermore, successful building energy retrofit projects are the showcases to the general public, encouraging other sectors(e.g. commercial) to conduct building retrofits for energy savings. Recognising these benefits,several state governments in Australia have introduced building energy efficiency policies and programs. This paper reviewed the energy efficiency policies/programs in five States in Australia: Victoria, New South Wales, South Australia, Western Australia, and Queensland in terms of respective policies and targets, implementation methods and current progress. The lessons learned from these programs were also discussed. This research revealed that the key factors for a successful government buildingenergy retrofitting program are 1) having a properly enforced energy efficiency mandate with clear energy saving targets, 2) establishing an expert facilitation team and 3) implementing suitable financing and procurement methods.展开更多
文摘Under the background of new urbanization, rural buildings' energy efficiency retrofit is an essential part of the overall work of the building energy conservation. Therefore, taking rural buildings in hot-summer and cold-winter zone as the research object, we carried out field investigation by combining geographical climate charactedstics with social-economic conditions and analyzed the energy consumption and energy conservation of rural buildings in hot-summer and cold-winter zone. On the basis of the investigation and analysis, this paper pointed out the questions with its energy efficiency retrofit and proposed the energy-saving strategy which was suitable for rural buildings in hot-summer and cold-winter zone based on people's livelihood and development.
文摘In Turkey, most of the common type projects of mass production residential buildings are being developed and constructed by TOK1 (Housing Development Administration of Turkey). These buildings, in which energy efficient approach has been disregarded for years, cause to gradually increase on heating and cooling energy consumptions. In regards to national economics, it is essential to evaluate energy efficiency and to develop suggestions to decrease energy consumptions in residential buildings. To achieve appropriate solutions, cost evaluation also becomes necessary. Therefore, this paper aims to introduce a study which serves the purpose of producing a choice of energy efficient solutions in order to reduce energy consumptions and energy cost. In this study, different heating and cooling energy efficient scenarios have been developed for a selected residential building, constructed by TOKI, for climatic zones of Turkey. For each scenario, energy simulations have been executed by means of the simulation program--DesignBuilder, the user-friendly visual interface of EnergyPlus, and cost analysis has been carried out by using the net present value and discounted payback period method. As a result, energy and cost effective solutions have been presented and discussed for different climatic zones.
基金developed as part of the GEO4CIVHIC Project,which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No.792355.
文摘According to the recent policies regarding energy use in buildings and the need of retrofit strategies,the aim of this work is to support policies concerning the installation of ground source heat exchangers in urban and historical areas,raising the awareness on the potential energy saving achievable with optimal sizing and limited impact on the urban environment.Archetypes have been developed distinguishing among existing and historic buildings,focusing on single-family terrace houses,which are the typical residential buildings in European historic centres.A methodology for the optimal sizing of ground source heat pumps,eventually considering dual-source system or air system has been developed combining simulations of a photovoltaic system to estimate the self-sufficiency and the self-consumption for five orientations of the building.Extreme results have been obtained for warm cli-mates,with negligible heating energy demand and possibly free cooling systems rather than traditional cooling systems needed in wintertime.Penalty temperature was acceptable despite unbalanced energy demands.With proper inclination,photovoltaic systems could provide up to 40%of self-sufficiency share also in northern cli-mates.An energy-economic analysis was carried out obtaining a variety of cases representing a general overview of the European building stock and the potential benefits achievable in terms of renewable energy share,energy savings and economic investments needed to be extended to simulations at urban scale.
文摘A major roadblock in achieving substantial building energy reduction is the low performance of old buildings that account for a significant portion of the building energy consumption.Finding low-cost energy retrofit solutions that do not disrupt occupants’daily life during the retrofitting is the key to successful building energy retrofit initiatives.In this paper,a novel and low-cost exterior wall retrofitting solution is introduced,and its performance in reducing space cooling load was quantitatively evaluated to demonstrate its feasibility and effectiveness.The primary goal of this paper is to provide a quantitative assessment of the cooling-energy savings potential by using the proposed new wall system.The intended retrofitting targets are the large amount of existing cavity-wall buildings located in hot climate regions.The quantification of the before-after heat-flux reduction was conducted through a 3-dimensional steady-state low turbulence computational fluid dynamics(CFD)model,which is validated by benchmarking its prediction against the published experimental case results.The outcomes of the investigation suggest that this simple low-cost solution has great potentials in reducing buildings’summer cooling load in hot climate regions.The applicability of this solution is not limited to retrofitting existing buildings.New energy-efficient building designs can also adopt this solution in their envelope systems.
基金This paper is the outcome of the research project TRP-1771 sponsored by American Society of Heating,Refrigerating and Air-Conditioning Engineers(ASHRAE)This research was also supported by the National Science Foundation under Awards No.IIS-1802017.
文摘Quantifying the energy savings of various energy efficiency measures(EEMs)for an energy retrofit project often necessitates an energy audit and detailed whole building energy modeling to evaluate the EEMs;however,this is often cost-prohibitive for small and medium buildings.In order to provide a defined guideline for projects with assumed common baseline characteristics,this paper applies a sensitivity analysis method to evaluate the impact of individual EEMs and groups these into packages to produce deep energy savings for a sample prototype medium office building across 15 climate zones in the United States.We start with one baseline model for each climate zone and nine candidate EEMs with a range of efficiency levels for each EEM.Three energy performance indicators(EPIs)are defined,which are annual electricity use intensity,annual natural gas use intensity,and annual energy cost.Then,a Standard Regression Coefficient(SRC)sensitivity analysis method is applied to determine the sensitivity of each EEM with respect to the three EPIs,and the relative sensitivity of all EEMs are calculated to evaluate their energy impacts.For the selected range of efficiency levels,the results indicate that the EEMs with higher energy impacts(i.e.,higher sensitivity)in most climate zones are high-performance windows,reduced interior lighting power,and reduced interior plug and process loads.However,the sensitivity of the EEMs also vary by climate zone and EPI;for example,improved opaque envelope insulation and efficiency of cooling and heating systems are found to have a high energy impact in cold and hot climates.
文摘The paper is based on the results of two research experiences: an European research titled "Improving the Quality of Suburban Building Stock" (COST Action TU0701 ) and an Italian National Research project called "Renovation, Regeneration and Valorization of Social Housing Settlements Built in the Suburban Areas in the Second Half of Last Century" (PRIN 2010-2012). The paper summarizes the researches outputs whose main aim was to illustrate the potentialities of different strategies for the improvement of suburbs. In order to implement different strategies for the refurbishment of suburban areas, researches were aimed firstly at the identification of several case studies that are representatives of the European panorama because of their typology, construction and state of physical and social deterioration. The final result was a collection of examples for the urban regeneration, gathered from case studies but offering a wide-scale of applications on public housing complexes. The paper highlights different approaches and strategies taken by different countries towards the methodologies of assessing, refurbishing and adding new value to the suburban areas, in view of increasing not only the quality of buildings but also the quality of public spaces and services, for a better quality of life of the citizens.
基金funding this project under SBEnrc Project 1.43 "Retrofitting Public Buildings for Energy and Water Efficiency"
文摘Government buildings are responsible for a significant proportion of energy consumption worldwide,for example, in Australia, up to 41.5 PJ energy was consumed by government buildings in 2011–2012. While the newly constructed buildings may be energy efficient,the existing buildings, which account for more than 85% of the total building stock, were built prior to the time when energy rating systems was put in practice and are consequently energy inefficient to a large degree. Reducing the energy consumption in existing government buildings is essential, as it will not only reduce the costs and environmental impacts, but also show governments' strong commitment towards the reduction of greenhouse gas emission. Furthermore, successful building energy retrofit projects are the showcases to the general public, encouraging other sectors(e.g. commercial) to conduct building retrofits for energy savings. Recognising these benefits,several state governments in Australia have introduced building energy efficiency policies and programs. This paper reviewed the energy efficiency policies/programs in five States in Australia: Victoria, New South Wales, South Australia, Western Australia, and Queensland in terms of respective policies and targets, implementation methods and current progress. The lessons learned from these programs were also discussed. This research revealed that the key factors for a successful government buildingenergy retrofitting program are 1) having a properly enforced energy efficiency mandate with clear energy saving targets, 2) establishing an expert facilitation team and 3) implementing suitable financing and procurement methods.