China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the gove...China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.展开更多
Based on the annual production data collected by the Statistic Center of the Ministry of Railways of the People's Republic of China, we calculated the energy saving and direct emission reductions of CO2, soot, SO2, C...Based on the annual production data collected by the Statistic Center of the Ministry of Railways of the People's Republic of China, we calculated the energy saving and direct emission reductions of CO2, soot, SO2, CO, NOx and CnHm of electrified railways, and analyzed their dynamic characteristics during the period of 1975 2007. The results show that during this period, the annual mean values of energy saving is 1.23×10^6 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 4.267×10^6 t, 20.5×10^3 t, 3.0×10^3 t, 9.6×10^3 t, 67.9×10^3 t, and 6.9×10^3 t per year, respectively. The annual average increasing rates of energy saving is 139×10^3 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 483×10^3 t, 2.3×10^3 t, 0.34×10^3 t, 1.1×10^3 t, 7.7 ×10^3 t and 0.78×10^3 t per year, respectively. The electrified railways have played an important role in decreasing the energy consumption and air pollutant emissions of China's railway system. The results of this study could provide some reference knowledge for future reductions of energy consumption and waste gas emission in China's railway transportation.展开更多
With the startup and execution of new socialistic countryside construction in Heilongjiang Province,the transition from castoff to resource is strengthened in the countryside,aiming at neat appearance of the countrysi...With the startup and execution of new socialistic countryside construction in Heilongjiang Province,the transition from castoff to resource is strengthened in the countryside,aiming at neat appearance of the countryside,clean production and saving energy.People produce biogas and provide the countryside with new energy by means of turning livestock's dejection into resources,composting of the plant and animal's leavings in the courtyard and even in the factory.It is helpful for the countryside to conserve the energy and reduce emission of the waste.And it also plays an important role in protecting the eco-environment,beautifying homestead and developing the ecological agriculture and so on.The liquid and solid residue in the biogas production can be reused as fertilizer for crops or food for animals after pretreatment,which is propitious to accelerate the development of the circular economy in Heilongjiang Province.展开更多
This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine a...This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.展开更多
The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of t...The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.展开更多
This study provides an overview of the production and classification of metallurgical slag and its impact on energy-saving and emission reduction in the metallurgical industry and an analysis of the impact of key fact...This study provides an overview of the production and classification of metallurgical slag and its impact on energy-saving and emission reduction in the metallurgical industry and an analysis of the impact of key factors on slag processing technology, including a brief account of blast furnace(BF) slag processing and applications with a focus on the steel slag disposal processes and the features of some typical processes. In view of the characteristics of the basic oxygen furnace (BOF) slag and the technical difficulties faced by the traditional processes,it describes the principle,features and technical advantages of the Baosteel short-flow (BSSF) steel slag treatment process developed by Baosteel. The thinking and outlook on the direction of the development of the metallurgical slag processing process are stated.展开更多
It's been proved by theory and practice that taxation policy is one of the important means of realizing energy saving and emission reduction. The green taxation system in the Western countries has got better effec...It's been proved by theory and practice that taxation policy is one of the important means of realizing energy saving and emission reduction. The green taxation system in the Western countries has got better effects in energy saving and environmental protection. In the recent years, China has in succession released some taxation policies promoting energy saving and emission reduction, but still has a huge gap to meet the real needs of energy saving and emission reduction. By analyzing China's status quo of the polices of energy saving and emission reduction and drawing upon experiences of the developed countries about green taxation, this paper presents how to perfect ideas of China's energy saving and emission reduction taxation policies: adjusting taxes relevant to green taxation in the current taxation system, such as resource tax, consumer tax, and so on; collecting new environmental tax; perfecting the preferential taxation policies for the energy saving and environmental protection industries.展开更多
For studying new and renewable energy as a substitute for fossil energy in primary energy consumption and its impact on carbon emissions to cope with economic uncertainties, a multi-sector DSGE model was employed to s...For studying new and renewable energy as a substitute for fossil energy in primary energy consumption and its impact on carbon emissions to cope with economic uncertainties, a multi-sector DSGE model was employed to simulate the dynamic impact on carbon emissions and macroeconomic development. The structural adjustment of energy consumption and the carbon emissions mitigation policy were considered in the model. The simulation results showed that using new and renewable energy instead of fossil energy is an optimal choice for the firms to comply with the regulations of carbon emission mitigation policy. Structural adjustment of energy consumption is the best route to achieve the dual goal of economic development and carbon emission reduction. Unexpected sharp fall in free carbon quota has a negative impact on the economy.展开更多
Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models ...Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective.展开更多
Economic growth and industrialization often default to a great dependency on fossil fuels (FF) to supply power needs. The carbon rich nature of FF combustion can impact global warming. Therefore, it is conducive to tr...Economic growth and industrialization often default to a great dependency on fossil fuels (FF) to supply power needs. The carbon rich nature of FF combustion can impact global warming. Therefore, it is conducive to transition from FF to renewable energy (RE). The present study aimed to address if replacement of a single FF by RE can mitigate carbon emissions. We conduct the study in a country undergoing mass urbanization and challenging energy demands. <span>Data from energy resources in the Power & Energy Sector Master Plan (PSMP2016;Bangladesh) are analyzed over the 2017-2021 trajectory. Two scenarios for imports, oil and coal are assessed. Environmental input output (E</span><span><span>-</span></span><span><span style="font-family:;" "=""><span>IO) analysis and percentage equivalence analysis measured data variables. The data is then further disaggregated into an emission reduction (ER) model with sensitivity analysis</span><span> to measure carbon emission reduction when each FF source is substituted by RE. </span></span></span><span>Results show the percentage share of energy generation capacity by both coal and RE increase over time. Solar and wind power contribute to the increase in RE. When oil is imported a 1% increase in oil, coal, and gas-based energy generation capacity increases carbon emissions by 1.25%, 1.48% and 0.93%, respectively. 1% increase in RE produces negligible carbon emissions (0.0042%). There was little difference in the percentages of carbon emissions when coal is imported. Substituting any FF with RE of equal energy capacity does not, in the short term, reduce carbon emissions in either scenario. Therefore, we conclude that for long term clean energy prospects in Bangladesh, RE needs to be developed to operate at greater capacity in conjunction with other carbon management factors. The research findings herein offer insights for clean energy implementation in developing nations.</span>展开更多
Facing increasing passenger and cargo transport demand and limited re-source in the 13th Five-Year period, how to make a breakthrough and substantial progress has become a key issue on planning and the Top-level Desig...Facing increasing passenger and cargo transport demand and limited re-source in the 13th Five-Year period, how to make a breakthrough and substantial progress has become a key issue on planning and the Top-level Design. In this paper we judged and analyzed the current development and potential demand of the energy saving and emission reduction in Beijing traffic industry. Through application of energy and emission prediction model which based on the vehicle activity data, the development goals of “one drop, double control, and triple upgrade” have been put forward. In order to achieve the goal, “5 + 1” development strategies should be implemented, and we also proposed the thinking and recommendations on sustainable development of transportation.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
Green and low-carbon development is the critical countermeasure to cope with climate change and to promote energy production and consumption revolution.China National Offshore Oil Corporation(“CNOOC”)has thoroughly ...Green and low-carbon development is the critical countermeasure to cope with climate change and to promote energy production and consumption revolution.China National Offshore Oil Corporation(“CNOOC”)has thoroughly implemented the requirements of the country’s ecological civilisation construction,highlighting the mission and responsibility of large central energy enterprises.Combined with the characteristics of its industry,CNOOC put forward a green low-carbon development strategy.CNOOC has put into practice the concept and practice of green and lowcarbon development by optimising the design of management systems,innovating energy conservation and emission reduction management and practice,promoting the construction of a green manufacturing system,and strengthening the supply of low-carbon clean energy.The main path and direction of the follow-up of the sustainable development are clearly defined.These practices provide a useful reference for promoting the transformation of China’s economic development mode to being more green and low-carbon,constructing an ecological civilization and development that is sustainable.展开更多
Carbon dioxide is an important medium of the global carbon cycle,and has the dual properties of realizing the conversion of organic matter in the ecosystem and causing the greenhouse effect.The fixed or available carb...Carbon dioxide is an important medium of the global carbon cycle,and has the dual properties of realizing the conversion of organic matter in the ecosystem and causing the greenhouse effect.The fixed or available carbon dioxide in the atmosphere is defined as"gray carbon",while the carbon dioxide that cannot be fixed or used and remains in the atmosphere is called"black carbon".Carbon neutral is the consensus of human development,but its implementation still faces many challenges in politics,resources,technology,market,and energy structure,etc.It is proposed that carbon replacement,carbon emission reduction,carbon sequestration,and carbon cycle are the four main approaches to achieve carbon neutral,among which carbon replacement is the backbone.New energy has become the leading role of the third energy conversion and will dominate carbon neutral in the future.Nowadays,solar energy,wind energy,hydropower,nuclear energy and hydrogen energy are the main forces of new energy,helping the power sector to achieve low carbon emissions."Green hydrogen"is the reserve force of new energy,helping further reduce carbon emissions in industrial and transportation fields.Artificial carbon conversion technology is a bridge connecting new energy and fossil energy,effectively reducing the carbon emissions of fossil energy.It is predicted that the peak value of China’s carbon dioxide emissions will reach 110×10^(8) t in 2030.The study predicts that China’s carbon emissions will drop to 22×10^(8) t,33×10^(8) t and 44×10^(8) t,respectively,in 2060 according to three scenarios of high,medium,and low levels.To realize carbon neutral in China,seven implementation suggestions have been put forward to build a new"three small and one large"energy structure in China and promote the realization of China’s energy independence strategy.展开更多
The Paris Agreement establishes a new mechanism for post-2020 global climate governance, and sets long-term goals for global response to climate change, which will accelerate worldwide low-carbon transformation of eco...The Paris Agreement establishes a new mechanism for post-2020 global climate governance, and sets long-term goals for global response to climate change, which will accelerate worldwide low-carbon transformation of economic development pattern, promote the revolutionary reform of energy system, boost a fundamental change in the mode of social production and consumption, and further the civilization of human society from industrial civilization to eco-civilization. The urgency of global low-carbon transition will reshape the competition situation of world's economy, trade and technology. Taking the construction of eco-civilization as a guide, China explores green and low-carbon development paths,establishes ambitious intended nationally determined contribution(INDC) targets and action plans, advances energy production and consumption revolution, and speeds up the transformation of economic development pattern. These strategies and actions not only confirm to the trend of the world low-carbon transition, but also meet the intrinsic requirements for easing the domestic resources and environment constraints and realizing sustainable development. They are multi-win-win strategies for promotion of economic development and environmental protection and mitigation of carbon emissions. China should take the global long-term emission reduction targets as a guide, and formulate medium and long-term low-carbon development strategy, build the core competitiveness of low-carbon advanced technology and development pattern, and take an in-depth part in global governance so as to reflect the responsibility of China as a great power in constructing a community of common destiny for all mankind and addressing global ecological crisis.展开更多
In order to reduce carbon emission in agricultural production,this paper has discussed the developmental trends of low-carbon agriculture in terms of developing precision agriculture,improving the efficiency of fertil...In order to reduce carbon emission in agricultural production,this paper has discussed the developmental trends of low-carbon agriculture in terms of developing precision agriculture,improving the efficiency of fertilizer utilization,scientific use of pesticides,water-saving irrigation,ecological control of pests and diseases,as well as energy conservation and emission reduction by agricultural machinery and other agricultural practices.展开更多
In this paper,we analyze the strategies for the development of low-carbon animal husbandry in Taiwan which mainly focuses on strengthening the livestock farm carbon reduction,promoting the livestock breeding energy co...In this paper,we analyze the strategies for the development of low-carbon animal husbandry in Taiwan which mainly focuses on strengthening the livestock farm carbon reduction,promoting the livestock breeding energy conservation and emission reduction technology,and develop the environmental protection laws related to animal husbandry to combat animal husbandry pollution. Learning from the strategies and legislative management experience for the development of low-carbon animal husbandry in Taiwan,we set forth the following recommendations for improving the development of low-carbon animal husbandry in China's Mainland: increasing the financial investment in environmental protection; strengthening the scientific research of cleaner production; promoting sound pollution control legislation; moderately restricting the scale of livestock and poultry farm.展开更多
This article describes an analysis of the energy and economic impacts of possible energy efficiency standards for room air conditioners on both U.S. consumers and the nation as a whole. We used two metrics to determin...This article describes an analysis of the energy and economic impacts of possible energy efficiency standards for room air conditioners on both U.S. consumers and the nation as a whole. We used two metrics to determine the effect of standards on a representative sample of U.S. consumers: life-cycle cost change and payback period. For the national impact analysis, we evaluated national energy savings attributable to each potential standard, the monetary value of the energy savings to consumers of room air conditioners, the increased total installed costs because of standards, and the net present value of the difference between the value of energy savings and increased total installed costs. Our analysis indicates that standards for room air conditioners at efficiency level 3, which is 17% more efficient than today’s typical unit in the case of room air conditioners less than 6000 Btu/h with louvers and 12% more efficient in the case of room air conditioners 8000 - 13,999 Btu/h with louvers, would save close to one quad of energy over 30 years and have a net present value of consumer benefit of between ?$0.14 billion and $1.82 billion, depending on the discount rate. In addition, such standards would reduce carbon dioxide emissions and NOx emissions.展开更多
The current situation of the epidemic is complex and changeable.Under the China adherence to the“dynamic zero clearance,”epidemic prevention and control is closely related to all walks of life,and epidemic preventio...The current situation of the epidemic is complex and changeable.Under the China adherence to the“dynamic zero clearance,”epidemic prevention and control is closely related to all walks of life,and epidemic prevention awning has become one of the essential basic epidemic prevention facilities.However,most of the epidemic awnings are manufactured for the isolation and protection from wind and rain,which could not meet the needs of electricity allocation during emergencies.Therefore,our goal is to design a new energy-saving epidemic prevention tent that is green,stable,and easy to shrink.It is equipped with multiple energy storage and multivariate methods to achieve self-supply of electric energy.First the“1+1”arrangement design of solar power panels on the anti-epidemic tent and pressure power panels combined with the design of pressure power panels under the tent can receive various energy inputs.At the same time,retractable brackets are designed under the four pillars,which are easy to fold and enhance the stability of the canopy.The utilization of energy is more diversified to achieve the purpose of energy conservation and emission reduction.Its market value is broad,and the development prospect is good.展开更多
基金supported by the "study of Green space management system and protection" of mechanism Economic Development Research Center of State Forestry Administration (ZDWT-2014-3)
文摘China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.
基金supported by Climate Change Special Project of China Meteorological Administration(No CCSF2011-14)
文摘Based on the annual production data collected by the Statistic Center of the Ministry of Railways of the People's Republic of China, we calculated the energy saving and direct emission reductions of CO2, soot, SO2, CO, NOx and CnHm of electrified railways, and analyzed their dynamic characteristics during the period of 1975 2007. The results show that during this period, the annual mean values of energy saving is 1.23×10^6 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 4.267×10^6 t, 20.5×10^3 t, 3.0×10^3 t, 9.6×10^3 t, 67.9×10^3 t, and 6.9×10^3 t per year, respectively. The annual average increasing rates of energy saving is 139×10^3 tce, and direct emission reduction of CO2, soot, SO2, CO, NOx and CnHm are 483×10^3 t, 2.3×10^3 t, 0.34×10^3 t, 1.1×10^3 t, 7.7 ×10^3 t and 0.78×10^3 t per year, respectively. The electrified railways have played an important role in decreasing the energy consumption and air pollutant emissions of China's railway system. The results of this study could provide some reference knowledge for future reductions of energy consumption and waste gas emission in China's railway transportation.
基金Supported by Foundation of Heilongjiang Province Educational Committee (11551056)Scientific Fund of Heilongjiang Province for Youth (QC2009C40)+1 种基金Fund of Harbin City Innovative Talent (2009RFQXN096)Heilongjiang Province Postdoctoral Science Foundation
文摘With the startup and execution of new socialistic countryside construction in Heilongjiang Province,the transition from castoff to resource is strengthened in the countryside,aiming at neat appearance of the countryside,clean production and saving energy.People produce biogas and provide the countryside with new energy by means of turning livestock's dejection into resources,composting of the plant and animal's leavings in the courtyard and even in the factory.It is helpful for the countryside to conserve the energy and reduce emission of the waste.And it also plays an important role in protecting the eco-environment,beautifying homestead and developing the ecological agriculture and so on.The liquid and solid residue in the biogas production can be reused as fertilizer for crops or food for animals after pretreatment,which is propitious to accelerate the development of the circular economy in Heilongjiang Province.
文摘This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.
文摘The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.
文摘This study provides an overview of the production and classification of metallurgical slag and its impact on energy-saving and emission reduction in the metallurgical industry and an analysis of the impact of key factors on slag processing technology, including a brief account of blast furnace(BF) slag processing and applications with a focus on the steel slag disposal processes and the features of some typical processes. In view of the characteristics of the basic oxygen furnace (BOF) slag and the technical difficulties faced by the traditional processes,it describes the principle,features and technical advantages of the Baosteel short-flow (BSSF) steel slag treatment process developed by Baosteel. The thinking and outlook on the direction of the development of the metallurgical slag processing process are stated.
基金supported by the Key Research Project of Shandong Social Science Planning(Grant No. 07JDB071)
文摘It's been proved by theory and practice that taxation policy is one of the important means of realizing energy saving and emission reduction. The green taxation system in the Western countries has got better effects in energy saving and environmental protection. In the recent years, China has in succession released some taxation policies promoting energy saving and emission reduction, but still has a huge gap to meet the real needs of energy saving and emission reduction. By analyzing China's status quo of the polices of energy saving and emission reduction and drawing upon experiences of the developed countries about green taxation, this paper presents how to perfect ideas of China's energy saving and emission reduction taxation policies: adjusting taxes relevant to green taxation in the current taxation system, such as resource tax, consumer tax, and so on; collecting new environmental tax; perfecting the preferential taxation policies for the energy saving and environmental protection industries.
基金the financial support from the National Natural Science Foundation of China(71473010,41701635)
文摘For studying new and renewable energy as a substitute for fossil energy in primary energy consumption and its impact on carbon emissions to cope with economic uncertainties, a multi-sector DSGE model was employed to simulate the dynamic impact on carbon emissions and macroeconomic development. The structural adjustment of energy consumption and the carbon emissions mitigation policy were considered in the model. The simulation results showed that using new and renewable energy instead of fossil energy is an optimal choice for the firms to comply with the regulations of carbon emission mitigation policy. Structural adjustment of energy consumption is the best route to achieve the dual goal of economic development and carbon emission reduction. Unexpected sharp fall in free carbon quota has a negative impact on the economy.
基金supported by the National Natural Science Foundation of China (No. 71101007)the National High Technology Research and Development Program of China (No. 2011AA110502)State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University Program (RCS2010ZZ001)
文摘Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective.
文摘Economic growth and industrialization often default to a great dependency on fossil fuels (FF) to supply power needs. The carbon rich nature of FF combustion can impact global warming. Therefore, it is conducive to transition from FF to renewable energy (RE). The present study aimed to address if replacement of a single FF by RE can mitigate carbon emissions. We conduct the study in a country undergoing mass urbanization and challenging energy demands. <span>Data from energy resources in the Power & Energy Sector Master Plan (PSMP2016;Bangladesh) are analyzed over the 2017-2021 trajectory. Two scenarios for imports, oil and coal are assessed. Environmental input output (E</span><span><span>-</span></span><span><span style="font-family:;" "=""><span>IO) analysis and percentage equivalence analysis measured data variables. The data is then further disaggregated into an emission reduction (ER) model with sensitivity analysis</span><span> to measure carbon emission reduction when each FF source is substituted by RE. </span></span></span><span>Results show the percentage share of energy generation capacity by both coal and RE increase over time. Solar and wind power contribute to the increase in RE. When oil is imported a 1% increase in oil, coal, and gas-based energy generation capacity increases carbon emissions by 1.25%, 1.48% and 0.93%, respectively. 1% increase in RE produces negligible carbon emissions (0.0042%). There was little difference in the percentages of carbon emissions when coal is imported. Substituting any FF with RE of equal energy capacity does not, in the short term, reduce carbon emissions in either scenario. Therefore, we conclude that for long term clean energy prospects in Bangladesh, RE needs to be developed to operate at greater capacity in conjunction with other carbon management factors. The research findings herein offer insights for clean energy implementation in developing nations.</span>
文摘Facing increasing passenger and cargo transport demand and limited re-source in the 13th Five-Year period, how to make a breakthrough and substantial progress has become a key issue on planning and the Top-level Design. In this paper we judged and analyzed the current development and potential demand of the energy saving and emission reduction in Beijing traffic industry. Through application of energy and emission prediction model which based on the vehicle activity data, the development goals of “one drop, double control, and triple upgrade” have been put forward. In order to achieve the goal, “5 + 1” development strategies should be implemented, and we also proposed the thinking and recommendations on sustainable development of transportation.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
文摘Green and low-carbon development is the critical countermeasure to cope with climate change and to promote energy production and consumption revolution.China National Offshore Oil Corporation(“CNOOC”)has thoroughly implemented the requirements of the country’s ecological civilisation construction,highlighting the mission and responsibility of large central energy enterprises.Combined with the characteristics of its industry,CNOOC put forward a green low-carbon development strategy.CNOOC has put into practice the concept and practice of green and lowcarbon development by optimising the design of management systems,innovating energy conservation and emission reduction management and practice,promoting the construction of a green manufacturing system,and strengthening the supply of low-carbon clean energy.The main path and direction of the follow-up of the sustainable development are clearly defined.These practices provide a useful reference for promoting the transformation of China’s economic development mode to being more green and low-carbon,constructing an ecological civilization and development that is sustainable.
文摘Carbon dioxide is an important medium of the global carbon cycle,and has the dual properties of realizing the conversion of organic matter in the ecosystem and causing the greenhouse effect.The fixed or available carbon dioxide in the atmosphere is defined as"gray carbon",while the carbon dioxide that cannot be fixed or used and remains in the atmosphere is called"black carbon".Carbon neutral is the consensus of human development,but its implementation still faces many challenges in politics,resources,technology,market,and energy structure,etc.It is proposed that carbon replacement,carbon emission reduction,carbon sequestration,and carbon cycle are the four main approaches to achieve carbon neutral,among which carbon replacement is the backbone.New energy has become the leading role of the third energy conversion and will dominate carbon neutral in the future.Nowadays,solar energy,wind energy,hydropower,nuclear energy and hydrogen energy are the main forces of new energy,helping the power sector to achieve low carbon emissions."Green hydrogen"is the reserve force of new energy,helping further reduce carbon emissions in industrial and transportation fields.Artificial carbon conversion technology is a bridge connecting new energy and fossil energy,effectively reducing the carbon emissions of fossil energy.It is predicted that the peak value of China’s carbon dioxide emissions will reach 110×10^(8) t in 2030.The study predicts that China’s carbon emissions will drop to 22×10^(8) t,33×10^(8) t and 44×10^(8) t,respectively,in 2060 according to three scenarios of high,medium,and low levels.To realize carbon neutral in China,seven implementation suggestions have been put forward to build a new"three small and one large"energy structure in China and promote the realization of China’s energy independence strategy.
文摘The Paris Agreement establishes a new mechanism for post-2020 global climate governance, and sets long-term goals for global response to climate change, which will accelerate worldwide low-carbon transformation of economic development pattern, promote the revolutionary reform of energy system, boost a fundamental change in the mode of social production and consumption, and further the civilization of human society from industrial civilization to eco-civilization. The urgency of global low-carbon transition will reshape the competition situation of world's economy, trade and technology. Taking the construction of eco-civilization as a guide, China explores green and low-carbon development paths,establishes ambitious intended nationally determined contribution(INDC) targets and action plans, advances energy production and consumption revolution, and speeds up the transformation of economic development pattern. These strategies and actions not only confirm to the trend of the world low-carbon transition, but also meet the intrinsic requirements for easing the domestic resources and environment constraints and realizing sustainable development. They are multi-win-win strategies for promotion of economic development and environmental protection and mitigation of carbon emissions. China should take the global long-term emission reduction targets as a guide, and formulate medium and long-term low-carbon development strategy, build the core competitiveness of low-carbon advanced technology and development pattern, and take an in-depth part in global governance so as to reflect the responsibility of China as a great power in constructing a community of common destiny for all mankind and addressing global ecological crisis.
基金Supported by Special Post-expo Project Funded by the Ministry of Science and Technology(2010BAK69B18)Special Scientific and Technical Project in Chongming of Shanghai Science and Technology Commission(10DZ1960101)
文摘In order to reduce carbon emission in agricultural production,this paper has discussed the developmental trends of low-carbon agriculture in terms of developing precision agriculture,improving the efficiency of fertilizer utilization,scientific use of pesticides,water-saving irrigation,ecological control of pests and diseases,as well as energy conservation and emission reduction by agricultural machinery and other agricultural practices.
基金Supported by Industrial Economic Research Project of National Sheep Industry Technology System(CARS-40-20)
文摘In this paper,we analyze the strategies for the development of low-carbon animal husbandry in Taiwan which mainly focuses on strengthening the livestock farm carbon reduction,promoting the livestock breeding energy conservation and emission reduction technology,and develop the environmental protection laws related to animal husbandry to combat animal husbandry pollution. Learning from the strategies and legislative management experience for the development of low-carbon animal husbandry in Taiwan,we set forth the following recommendations for improving the development of low-carbon animal husbandry in China's Mainland: increasing the financial investment in environmental protection; strengthening the scientific research of cleaner production; promoting sound pollution control legislation; moderately restricting the scale of livestock and poultry farm.
文摘This article describes an analysis of the energy and economic impacts of possible energy efficiency standards for room air conditioners on both U.S. consumers and the nation as a whole. We used two metrics to determine the effect of standards on a representative sample of U.S. consumers: life-cycle cost change and payback period. For the national impact analysis, we evaluated national energy savings attributable to each potential standard, the monetary value of the energy savings to consumers of room air conditioners, the increased total installed costs because of standards, and the net present value of the difference between the value of energy savings and increased total installed costs. Our analysis indicates that standards for room air conditioners at efficiency level 3, which is 17% more efficient than today’s typical unit in the case of room air conditioners less than 6000 Btu/h with louvers and 12% more efficient in the case of room air conditioners 8000 - 13,999 Btu/h with louvers, would save close to one quad of energy over 30 years and have a net present value of consumer benefit of between ?$0.14 billion and $1.82 billion, depending on the discount rate. In addition, such standards would reduce carbon dioxide emissions and NOx emissions.
文摘The current situation of the epidemic is complex and changeable.Under the China adherence to the“dynamic zero clearance,”epidemic prevention and control is closely related to all walks of life,and epidemic prevention awning has become one of the essential basic epidemic prevention facilities.However,most of the epidemic awnings are manufactured for the isolation and protection from wind and rain,which could not meet the needs of electricity allocation during emergencies.Therefore,our goal is to design a new energy-saving epidemic prevention tent that is green,stable,and easy to shrink.It is equipped with multiple energy storage and multivariate methods to achieve self-supply of electric energy.First the“1+1”arrangement design of solar power panels on the anti-epidemic tent and pressure power panels combined with the design of pressure power panels under the tent can receive various energy inputs.At the same time,retractable brackets are designed under the four pillars,which are easy to fold and enhance the stability of the canopy.The utilization of energy is more diversified to achieve the purpose of energy conservation and emission reduction.Its market value is broad,and the development prospect is good.