As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic...Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.展开更多
Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consu...Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.展开更多
Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing ope...Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes.展开更多
Currently,energy saving design has been conducted on single building but not on the whole residential community in urban and rural areas.So,the paper has proposed energy saving measures for residential planning from t...Currently,energy saving design has been conducted on single building but not on the whole residential community in urban and rural areas.So,the paper has proposed energy saving measures for residential planning from the perspective of site selection and layout of buildings.Specific measures are as follows.Firstly,buildings should be constructed on the sunny side and leeside;secondly,buildings on the south should be lower than those on the north;the east side of the building should be open while the west side should be closed;thirdly,climate protection unit should be set;fourthly,buildings should be of northsouth direction primarily,and the main room should be set on the east side and the assistant rooms or passage on the west side in the buildings of east-west direction;fifthly,it should select compact and wellarranged households and the units should not be combined in point and dislocation and jointing.展开更多
In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experi...In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential.展开更多
It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The pla...It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.展开更多
The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation area...The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation areas.This mode of operation requires a massive amount of energy to sustain the thickness of the frozen body.Therefore,it is of great interest to propose new concepts to reduce energy consumption while providing sufficient structural stability and safe operation.This paper discusses the principle of the freezing on demand(FoD)by means of experiment and mathematical model.A lab-scale rig that mimics the AGF process is conceived and developed.The setup is equipped with more than 80 thermocouples,flow-meters,and advanced instrumentation system to analyze the performance of the AGF process under the FoD concept.A mathematical model has been derived,validated,and utilized to simulate the transient FoD concept.The results suggest that the overall energy saving notably depends on the coolant’s temperature;the energy saving increases while decreasing the coolant inlet temperature.Moreover,applying the FoD concept in an AGF system leads to a significant drop in energy consumption.展开更多
It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage...It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development.展开更多
In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from...In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.展开更多
Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upo...Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively.展开更多
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate...To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.展开更多
A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a...A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a study on optimal energy saving in DC-electrified railway with on-board energy storage system(OBESS) by using peak demand cutting strategy under different trip time controls.The proposed strategy uses OBESS to store recovered braking energy and find an appropriated time to deliver the stored energy back to the power network in such a way that peak power of every substations is reduced.Bangkok Mass Transit System(BTS)-Silom Line in Thailand is used to test and verify the proposed strategy.The results show that substation peak power is reduced by63.49% and net energy consumption is reduced by 15.56%using coasting and deceleration trip time control.展开更多
China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the gove...China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.展开更多
This article sums up the energy consumption of process units and the overall energy consumption of 10 Mt/a class refineries constructed or revamped in recent years. The energy saving measures adopted in design of thes...This article sums up the energy consumption of process units and the overall energy consumption of 10 Mt/a class refineries constructed or revamped in recent years. The energy saving measures adopted in design of these refineries are analyzed and discussed. Finally, this article also makes comments and puts forward recommendations on the objectives for energy conservation at refineries in the future.展开更多
Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the ...Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform.To reduce the energy loss,an innovative hydrau-lic-electric hybrid drive system is proposed,in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform,recycling kinetic and potential energy.The utilization of the kinetic and potential energy reduces the energy loss and installed power of the min-ing shovel.Meanwhile,the reliability of the mining shovel pure electric drive system also can be increased.In this paper,the hydraulic-electric hybrid driving principle is introduced,a small-scale testbed is set up to verify the feasibil-ity of the system,and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics.The test and simulation results show that,by adopting the proposed system,compared with the traditional purely electric driving system,the peak power and energy consumption of the hoisting electric motor are reduced by 36.7%and 29.7%,respectively.Similarly,the slewing electric motor experiences a significant decrease in peak power by 86.9%and a reduction in energy consumption by 59.4%.The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in over-sized and super heavy equipment.展开更多
[Objective] The study aimed at evaluating the ability to save energy and reduce CO2 emission in China's cement industry. [Method] Based on long-term energy alternative planning system software (LEAP), "LEAP of Ch...[Objective] The study aimed at evaluating the ability to save energy and reduce CO2 emission in China's cement industry. [Method] Based on long-term energy alternative planning system software (LEAP), "LEAP of China's cement industry" model was established to simulate energy conservation and emission reduction in China's cement industry from 2010 to 2040 in different technologic situations. E ResultJ To save ener- gy and reduce CO2 emissions, new dry process kiln has priority over other technologies or measures, followed by equipment enlargement, mechani- cal shaft kiln, power generation system based on waste heat, as well as high-efficiency and energy-saving grinding technology, and new prepara- tion technology. If all the advanced technologies and measures are adopted, energy consumption and C02 emissions can be reduced by about 40.76% and 42.97% respectively. [ Condusion] LEAP of model is suitable for analyzing energy saving and emission reducing in China's cement industry and other industrial fields.展开更多
The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimizat...The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimization or dynamic control of the Sargent dividing wall column, and in order to make the rigorous simulation of the Sargent dividing wall column more conducive to convergence, a ten column model for complex Sargent column is established in this paper,and the shortcut design method of this model is proposed. The internal minimum vapor and liquid flow are obtained by the Underwood equations and the mass balance method and the V-min method. The separation for a 4-component shortcut mixture of pentane, hexane, heptane and octane was considered, while the initial values of design parameters and the ratio of vapor-liquid distribution of each column were calculated by using the shortcut design method of a ten column model. And by comparing the shortcut calculations with rigorous simulation results, the practicality and reliability of shortcut calculations were verified. The reason for energy saving was analyzed based on back-mixing. A virtual heat exchanger is proposed to make the Sargent dividing wall column more energy efficient.展开更多
Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models ...Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective.展开更多
In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has n...In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the Project of Shanghai Science and Technology Commission (Grant No. 19DZ1203102)National Key Research and Development Project (2018YFD0401300)Shanghai Municipal Science and Technology Project (16040501600)。
文摘Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.
基金support by the National Science and Technology Council under grant no.NSTC 112-2221-E-167-017-MY3.
文摘Hotel buildings are currently among the largest energy consumers in the world.Heating,ventilation,and air conditioning are the most energy-intensive building systems,accounting for more than half of total energy consumption.An energy audit is used to predict the weak points of a building’s energy use system.Various factors influence building energy consumption,which can be modified to achieve more energy-efficient strategies.In this study,an existing hotel building in Central Taiwan is evaluated by simulating several scenarios using energy modeling over a year.Energy modeling is conducted by using Autodesk Revit 2025.It was discovered from the results that arranging the lighting schedule based on the ASHRAE Standard 90.1 could save up to 8.22%of energy consumption.And then the results also revealed that changing the glazing of the building into double-layer lowemissivity glass could reduce energy consumption by 14.58%.While the energy consumption of the building could also be decreased to 7.20%by changing the building orientation to the north.Meanwhile,moving the building location to Northern Taiwan could also minimize the energy consumption of the building by 3.23%.The results revealed that the double layer offers better thermal insulation,and low-emissivity glass can lower energy consumption,electricity costs,and CO_(2)emissions by up to 15.27%annually.While adjusting orientation and location can enhance energy performance,this approach is impractical for existing buildings,but this could be considered for designing new buildings.The results showed the relevancy of energy performance to CO_(2)emission production and electricity expenses.
文摘Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes.
文摘Currently,energy saving design has been conducted on single building but not on the whole residential community in urban and rural areas.So,the paper has proposed energy saving measures for residential planning from the perspective of site selection and layout of buildings.Specific measures are as follows.Firstly,buildings should be constructed on the sunny side and leeside;secondly,buildings on the south should be lower than those on the north;the east side of the building should be open while the west side should be closed;thirdly,climate protection unit should be set;fourthly,buildings should be of northsouth direction primarily,and the main room should be set on the east side and the assistant rooms or passage on the west side in the buildings of east-west direction;fifthly,it should select compact and wellarranged households and the units should not be combined in point and dislocation and jointing.
基金The National Natural Science Foundation of China(No.51106023)the National Key Technology R&D Program during the12th Five-Year Plan Period(No.2011BAJ03B14)
文摘In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential.
基金Supported by Scientific Research Program of Guangxi Provincial Department of Education(201010LX014)~~
文摘It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.
基金McGill Engineering Doctoral Award(MEDA)Fonds de recherche du Québec-Nature et technologies(FRQNT)-Bourses de doctorat(B2X)for supporting this research
文摘The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation areas.This mode of operation requires a massive amount of energy to sustain the thickness of the frozen body.Therefore,it is of great interest to propose new concepts to reduce energy consumption while providing sufficient structural stability and safe operation.This paper discusses the principle of the freezing on demand(FoD)by means of experiment and mathematical model.A lab-scale rig that mimics the AGF process is conceived and developed.The setup is equipped with more than 80 thermocouples,flow-meters,and advanced instrumentation system to analyze the performance of the AGF process under the FoD concept.A mathematical model has been derived,validated,and utilized to simulate the transient FoD concept.The results suggest that the overall energy saving notably depends on the coolant’s temperature;the energy saving increases while decreasing the coolant inlet temperature.Moreover,applying the FoD concept in an AGF system leads to a significant drop in energy consumption.
基金the financial support from the NCN,Poland,UMO-2020/39/B/ST8/02937 and NAWA,2020 PPN/BEK/2020/1/00129/ZAS/00001support from the Institute for Basic Science(IBS-R019-D1)。
文摘It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development.
基金The authors would like to thank the reviewers for their de-tailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported by the National Natural Science Foundation of China under Grant No. 61101107 the Scientific Research and Innovation Plan for the Youth of BUPT under Grant No. 2011RC0305 the National International Science and Technology Cooperation Project under Grant No. 2010DFA11320.
文摘In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.
基金Supported by the National Environmental Protection Bureau of P.R.China(Huan-Ke-Ke,1997,No.006,Project 14),China-Japan cooperative project:"Research on energy savings and alleviating environmental burden in petroleum enterprises"of Institute of Industrial
文摘Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively.
基金Project(51275211)supported by the National Natural Science Foundation of ChinaProject(11KJA580001)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(CXZZ12_0665)supported by the Postgraduate Innovation Natural Science Foundation of Jiangsu Province,China
文摘To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.
文摘A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a study on optimal energy saving in DC-electrified railway with on-board energy storage system(OBESS) by using peak demand cutting strategy under different trip time controls.The proposed strategy uses OBESS to store recovered braking energy and find an appropriated time to deliver the stored energy back to the power network in such a way that peak power of every substations is reduced.Bangkok Mass Transit System(BTS)-Silom Line in Thailand is used to test and verify the proposed strategy.The results show that substation peak power is reduced by63.49% and net energy consumption is reduced by 15.56%using coasting and deceleration trip time control.
基金supported by the "study of Green space management system and protection" of mechanism Economic Development Research Center of State Forestry Administration (ZDWT-2014-3)
文摘China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.
文摘This article sums up the energy consumption of process units and the overall energy consumption of 10 Mt/a class refineries constructed or revamped in recent years. The energy saving measures adopted in design of these refineries are analyzed and discussed. Finally, this article also makes comments and puts forward recommendations on the objectives for energy conservation at refineries in the future.
基金Supported by National Natural Science Foundation of China(Grant No.U1910211)National Key Research and Development Program of China(Grant No.2021YFB2011903).
文摘Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform.To reduce the energy loss,an innovative hydrau-lic-electric hybrid drive system is proposed,in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform,recycling kinetic and potential energy.The utilization of the kinetic and potential energy reduces the energy loss and installed power of the min-ing shovel.Meanwhile,the reliability of the mining shovel pure electric drive system also can be increased.In this paper,the hydraulic-electric hybrid driving principle is introduced,a small-scale testbed is set up to verify the feasibil-ity of the system,and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics.The test and simulation results show that,by adopting the proposed system,compared with the traditional purely electric driving system,the peak power and energy consumption of the hoisting electric motor are reduced by 36.7%and 29.7%,respectively.Similarly,the slewing electric motor experiences a significant decrease in peak power by 86.9%and a reduction in energy consumption by 59.4%.The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in over-sized and super heavy equipment.
基金Supported by Special Project for Developing National Major Scientific Instruments and Equipments (2011YQ060111)Scientific Research Project of Environmental Protection in Commonweal Industry(201009032)
文摘[Objective] The study aimed at evaluating the ability to save energy and reduce CO2 emission in China's cement industry. [Method] Based on long-term energy alternative planning system software (LEAP), "LEAP of China's cement industry" model was established to simulate energy conservation and emission reduction in China's cement industry from 2010 to 2040 in different technologic situations. E ResultJ To save ener- gy and reduce CO2 emissions, new dry process kiln has priority over other technologies or measures, followed by equipment enlargement, mechani- cal shaft kiln, power generation system based on waste heat, as well as high-efficiency and energy-saving grinding technology, and new prepara- tion technology. If all the advanced technologies and measures are adopted, energy consumption and C02 emissions can be reduced by about 40.76% and 42.97% respectively. [ Condusion] LEAP of model is suitable for analyzing energy saving and emission reducing in China's cement industry and other industrial fields.
基金supported by the High-level Talents Program of Hebei Province (A 2017002032)
文摘The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimization or dynamic control of the Sargent dividing wall column, and in order to make the rigorous simulation of the Sargent dividing wall column more conducive to convergence, a ten column model for complex Sargent column is established in this paper,and the shortcut design method of this model is proposed. The internal minimum vapor and liquid flow are obtained by the Underwood equations and the mass balance method and the V-min method. The separation for a 4-component shortcut mixture of pentane, hexane, heptane and octane was considered, while the initial values of design parameters and the ratio of vapor-liquid distribution of each column were calculated by using the shortcut design method of a ten column model. And by comparing the shortcut calculations with rigorous simulation results, the practicality and reliability of shortcut calculations were verified. The reason for energy saving was analyzed based on back-mixing. A virtual heat exchanger is proposed to make the Sargent dividing wall column more energy efficient.
基金supported by the National Natural Science Foundation of China (No. 71101007)the National High Technology Research and Development Program of China (No. 2011AA110502)State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University Program (RCS2010ZZ001)
文摘Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective.
基金supported by the National Natural Science Foundation of China(No.71974129).
文摘In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%.