Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipmen...Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.展开更多
Water is the source of all the creatures on the earth and energy is the main factor driving the world. With the increasing population and global change, water and energy conservation have become worldwide focal issues...Water is the source of all the creatures on the earth and energy is the main factor driving the world. With the increasing population and global change, water and energy conservation have become worldwide focal issues, particularly in the water-stressed and energy-limited regions. Rainwater harvesting, based on the collection and storage of rainfall runoff, has been widely used for domestic use and agricultural production in arid and semiarid regions. It has advantages of simple operation, high adaption, low cost and less energy consumption. This study reviewed rainwater harvesting systems adopted in the Loess Plateau of China and analyzed water use efficiency (WUE) for various rainwater harvesting techniques. Supplemental irrigation using harvested rainwater could increase crop yield by more than 30%, and WUE ranged from 0.7 to 5.7 kg m4 for spring wheat, corn and flax, and 30-40 kg m-3 for vegetables. Moreover, energy consumption for rainwater harvesting based on single family was compared with traditional water supply in the city of the Loess Plateau using the life cycle assessment (LCA) method. Results showed that energy consumption yielded per unit harvested rainwater was 25.96 MJ m-3 yr which was much less than 62.25 MJ m3 yr^-1 for main water supply in Baoji City, Shanxi Province, meaning that rainwater harvesting saved energy by 139.8% as compared to the main water supply system. This study highlights the importance and potential of rainwater harvesting for water and energy conservation in the near future.展开更多
基金Project(2011B061200043)supported by the Guangdong Provincial Department of Science and Technology,China
文摘Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.
基金supported by the National Natural Science Foundation of China(41025001and41130640)the Fundamental Research Funds for Central Universities of China,and Program for Changjiang Scholars and Innovative Research Team in University,China(IRT1108)
文摘Water is the source of all the creatures on the earth and energy is the main factor driving the world. With the increasing population and global change, water and energy conservation have become worldwide focal issues, particularly in the water-stressed and energy-limited regions. Rainwater harvesting, based on the collection and storage of rainfall runoff, has been widely used for domestic use and agricultural production in arid and semiarid regions. It has advantages of simple operation, high adaption, low cost and less energy consumption. This study reviewed rainwater harvesting systems adopted in the Loess Plateau of China and analyzed water use efficiency (WUE) for various rainwater harvesting techniques. Supplemental irrigation using harvested rainwater could increase crop yield by more than 30%, and WUE ranged from 0.7 to 5.7 kg m4 for spring wheat, corn and flax, and 30-40 kg m-3 for vegetables. Moreover, energy consumption for rainwater harvesting based on single family was compared with traditional water supply in the city of the Loess Plateau using the life cycle assessment (LCA) method. Results showed that energy consumption yielded per unit harvested rainwater was 25.96 MJ m-3 yr which was much less than 62.25 MJ m3 yr^-1 for main water supply in Baoji City, Shanxi Province, meaning that rainwater harvesting saved energy by 139.8% as compared to the main water supply system. This study highlights the importance and potential of rainwater harvesting for water and energy conservation in the near future.