期刊文献+
共找到12,225篇文章
< 1 2 250 >
每页显示 20 50 100
The effect of Ti and Zr content on the structure,mechanics and energy-release characteristics of Ti—Zr—Ta alloys
1
作者 Jia-yu Meng Jing-zhi He +4 位作者 Bin Zhang Jin Chen Shun Li Dun Niu Yu Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期343-350,共8页
Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-elem... Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content. 展开更多
关键词 Energetic structural materials Ti-Zr-Ta Multi-element alloy energy release characteristics
下载PDF
Reanalysis of energy band structure in the type-II quantum wells
2
作者 李欣欣 邓震 +4 位作者 江洋 杜春花 贾海强 王文新 陈弘 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期75-78,共4页
Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures... Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems. 展开更多
关键词 energy band structure type-II quantum wells low-dimensional semiconductors
下载PDF
Influence of manufacturing process-induced geometrical defects on the energy absorption capacity of polymer lattice structures
3
作者 Alexandre Riot Enrico Panettieri +1 位作者 Antonio Cosculluela Marco Montemurro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期47-59,共13页
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r... Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for. 展开更多
关键词 Lattice structures Architected cellular materials Dynamic simulation energy absorption Geometrical imperfection Additive manufacturing
下载PDF
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
4
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
Theoretical insights into the structures and fundamental properties of pnictogen nitrides
5
作者 Jingjing Wang Panlong Kong +3 位作者 Dingmei Zhang Defang Gao Zaifu Jiang Wei Dai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期474-479,共6页
Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Mot... Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Motivated by this statement,we calculate the stability,elastic properties,electronic properties and energy density of the Cmc2_(1) structure for pnictogen nitrides X_(3)N_(5)(X=P,As,Sb,and Bi)using first-principles calculations combined with particle swarm optimization algorithms.Calculations of formation enthalpies,elastic constants and phonon spectra show that P_(3)N_(5),As_(3)N_(5) and Sb_(3)N_(5) are thermodynamically,mechanically and kinetically stable at 35 GPa,whereas Bi_(3)N_(5) is mechanically and kinetically stable but thermodynamically unstable.The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds,confirmed by the calculated electronic localization function.We also calculate the energy densities for Sb_(3)N_(5) and find it to be a potentially high-energy-density material. 展开更多
关键词 pnictogen nitrides structural stability electronic property energy density
下载PDF
Quantum confinement of carriers in the type-I quantum wells structure
6
作者 Xinxin Li Zhen Deng +4 位作者 Yang Jiang Chunhua Du Haiqiang Jia Wenxin Wang Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期553-558,共6页
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However... Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance. 展开更多
关键词 energy band quantum confinement type-I quantum wells low-dimensional structures
下载PDF
Structure design and electrochemical properties of carbon-based single atom catalysts in energy catalysis:A review
7
作者 Shuqi Li Xincheng Lu +8 位作者 Shuling Liu Jingjing Zhou Yanyan Liu Huanhuan Zhang Ruofan Shen Kang Sun Jianchun Jiang Yongfeng Wang Baojun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期196-236,共41页
Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are ... Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers. 展开更多
关键词 Carbon materials Coordination chemistry Defective structure energy catalysis Single atom catalysts
下载PDF
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
8
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
The Tension Cosmology, Largest Cosmic Structures and Explosions of Supernovae from SST
9
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1029-1044,共16页
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea... Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic. 展开更多
关键词 Scale-Symmetric theory Tension Cosmology Coupling Constants Parameters σ8 and S8 Largest Cosmic structures Dark energy Supernova Explosion Cyclic Universe
下载PDF
Binding Energy, Root-Mean Square Radius and Magnetic Dipole Moment of the Nucleus 6Li
10
作者 Khadija Abdelhassan Kharroube 《Open Journal of Microphysics》 2024年第4期89-101,共13页
In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the roo... In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the root mean-square radius, and the magnetic dipole moment of the nucleus 6Li. We have computed the necessary two-particle orbital fractional parentage coefficients for nuclei with mass number A=6and number of quanta of excitations N=10, which are not available in the literature. In addition, we have used our previous findings on the nucleon-nucleon interaction with Gaussian radial dependencies, which fits the deuteron characteristics as well as the triton binding energy, root-mean square radius and magnetic dipole moment. The numerical results obtained in this work are in excellent agreement with the corresponding experimental data and the previously published theoretical results in the literature. 展开更多
关键词 Nuclear structure the Nucleus 6Li the Translation Invariant Shell Model Binding energy Root-Mean Square Radius Magnetic Dipole Moment
下载PDF
Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process 被引量:2
11
作者 刘庆明 黄金香 +1 位作者 邵惠阁 张云明 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期310-315,共6页
Ignition energy is one of tbe important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electr... Ignition energy is one of tbe important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%-14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. 展开更多
关键词 electric spark discharge characteristics energy structure ignition energy
下载PDF
Energy and structure of copper clusters (n=70-150) studied by the Monte Carlo computer simulation 被引量:2
12
作者 潘小东 盖志刚 李公平 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第9期3329-3335,共7页
The structure and binding energy of copper clusters of the size range 70 to 150 were studied by using the embeddedatom method. The stability of the structure of the clusters was studied by calculating the average bind... The structure and binding energy of copper clusters of the size range 70 to 150 were studied by using the embeddedatom method. The stability of the structure of the clusters was studied by calculating the average binding energy per atom, first difference energy and second difference energy of copper cluster. Most of the copper clusters of the size n=70-150 adopt an icosahedral structure. The results show that the trends are in agreement with theoretic prediction for copper clusters. The most stable structures for copper clusters are found at n=77, 90, 95, 131, 139. 展开更多
关键词 copper cluster structure energy
下载PDF
Near-surface structure and energy characteristics of the Antarctic Circumpolar Current 被引量:3
13
作者 GAO Libao YU Weidong +1 位作者 WANG Haiyuan LIU Yanliang 《Advances in Polar Science》 2013年第4期265-272,共8页
Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, n... Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, nearly zonal ACC combined with complex fronts dominates the circulation system in the Southern Ocean. Standard variance ellipses indicate that both the Agulhas Return Current and the East Australian Warm Current are stable supplements of the near-surface ACC, and that the anticyclonic gyre formed by the Brazil warm current and the Malvinas cold current is stable throughout the year. During austral winter, the current velocity increases because of the enhanced westerly wind. Aroused by the meridional motion of the ACC, the meridional velocity shows greater instability characteristics than the zonal velocity does over the core current. Additionally, the ACC exhibits an eastward declining trend in the core current velocity from southern Africa. The characteristics of the ACC are also argued from the perspective of energy. The energy distribution suggests that the mean kinetic energy (MKE), eddy kinetic energy (EKE), and are strong over the core currents of the ACC. However, in contrast, EKE/MKE suggests there is much less (more) eddy dissipation in regions with strong (weak) energy distribution. Both meridional and zonal energy variations are studied to illustrate additional details of the ACC energy characteristics. Generally, all the energy forms except EKE/MKE present west-east reducing trends, which coincide with the velocity statistics. Eddy dissipation has a much greater effect on MKE in the northern part of the Southern Ocean. 展开更多
关键词 mean structure energy characteristic ACC
下载PDF
From Highly Structured E-Infinity Rings and Transfinite Maximally Symmetric Manifolds to the Dark Energy Density of the Cosmos 被引量:2
14
作者 Mohamed S. El Naschie 《Advances in Pure Mathematics》 2014年第12期641-648,共8页
Starting from well established results in pure mathematics, mainly transfinite set theory, E-infinity algebra over operads, fuzzy manifolds and fuzzy Lie symmetry groups, we construct an exact Weyl scaling for the hig... Starting from well established results in pure mathematics, mainly transfinite set theory, E-infinity algebra over operads, fuzzy manifolds and fuzzy Lie symmetry groups, we construct an exact Weyl scaling for the highly structured E-infinity rings corresponding to E-infinity theory of high energy physics. The final result is an exact expression for the energy density of the cosmos which agrees with previous analysis as well as accurate cosmological measurements and observations, such as COBE, WMAP and Planck. The paper is partially intended as a vivid demonstration of the power of pure mathematics in physics and cosmology. 展开更多
关键词 HIGHLY structureD RINGS E-INFINITY Loop Spaces High energy Physics Dark energy Einstein Relativity Fractal-Cantorian Spacetime Nonlinear Dynamics Quantum Chaos
下载PDF
The molecular structure and the analytical potential energy function of S2^- and S3^-
15
作者 刘玉芳 李俊玉 +1 位作者 韩晓琴 孙金锋 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第8期2356-2360,共5页
In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S2^- and S3^- have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S2^- ground state is of 2II... In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S2^- and S3^- have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S2^- ground state is of 2IIg, the S3^- ground state is of 2B1 and S3^- has a bent (C2v) structure with an angle of 115.65° The results are in good agreement with these reported in other literature. For S3^- ion, the vibration frequencies and the force constants have also been calculated. Base on the general principles of microscopic reversibility, the dissociation limits has been deduced. The Murrell-Sorbie potential energy function for S2^- has been derived according to the ab initio data through the least- squares fitting. The force constants and spectroscopic data for S2^- have been calculated, then compared with other theoretical data. The analytical potential energy function of S3^- have been obtained based on the many-body expansion theory. The structure and energy can correctly reappear on the potential surface. 展开更多
关键词 S2^- S3^- molecular structure potential energy function
下载PDF
The structure and the analytical potential energy function of NH_2(X^2B_1)
16
作者 刘玉芳 蒋利娟 +1 位作者 马恒 孙金锋 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第6期2085-2089,共5页
This paper reports that the equilibrium structure of NH2 has been optimized at the QCISD/6-311++G (3df, 3pd) level. The ground-state NH2 has a bent (C2v, X^2B1) structure with an angle of 103.0582°. The geo... This paper reports that the equilibrium structure of NH2 has been optimized at the QCISD/6-311++G (3df, 3pd) level. The ground-state NH2 has a bent (C2v, X^2B1) structure with an angle of 103.0582°. The geometrical structure is in good agreement with the other calculational and experimental results. The harmonic frequencies and the force constants have also been calculated. Based on the group theory and the principle of microscopic reversibility, the dissociation limits of NH2(C2v, X^2B1) have been derived. The potential energy surface of NH2(X^2B1) is reasonable. The contour lines are constructed, the structure and energy of NH2 reappear on the potential energy surface. 展开更多
关键词 molecular structure analytical potential energy function dissociation limits
下载PDF
ON THE EVOLUTION OF LARGE SCALE STRUCTURES IN THREE-DIMENSIONAL MIXING LAYERS
17
作者 罗纪生 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期10-23,共14页
In this paper, several mathematical models for the large scale structures in some special kinds of mixing layers, which might be practically useful for enhancing the mixing, are proposed. First, the linear growth rate... In this paper, several mathematical models for the large scale structures in some special kinds of mixing layers, which might be practically useful for enhancing the mixing, are proposed. First, the linear growth rate of the large scale structures in the mixing layers was calculated. Then, using the much improved weakly non-linear theory, combined with the energy method, the non-linear evolution of large scale structures in two special mixing layer configurations is calculated. One of the mixing lavers has equal magnitudes of the upstream velocity vectors, while the angles between the velocity vectors and the trailing edge were pi /2 - phi and pi /2 + phi, respectively. The other mixing layer was generated by a splitter-plate with a 45-degree-sweep trailing edge. 展开更多
关键词 mixing layer large scale structure modified weakly non-linear theory energy method passive control
下载PDF
Quasi-40-Day Oscillation and Its Teleconnection Structure together with the Possible Dependence on Conversion of Barotropic Unstable Energy of Temporal Mean Flow 被引量:1
18
作者 徐建军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第2期193-200,共8页
A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energ... A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energy of mean flow in terms of ECWMF daily 500 hPa grid data in winter, indicating that the energy transportation is closely associated with the westerly jet position, with zonal (meridional) propagation in the strong (weak) wind region, that considerable conversion of barotropic energy occurs at the jet exit region where low-frequency oscillation gains energy from the mean flow, leading to maximum kinetic energy for the oscillation observed there, which is marked by evident barotropy in striking contrast to the baroclinicity at low latitudes and that the teleconnection core is related to the center of action in the atmosphere and bound up with the pattern of the west wind. 展开更多
关键词 Quasi-40-Day Oscillation and Its Teleconnection structure together with the Possible Dependence on Conversion of Barotropic Unstable energy of Temporal Mean Flow
下载PDF
Analysis on the Change Characteristics of the Correlation between Land Use Structure and Energy Consumption and Carbon Emissions in Kunming from 1997 to 2017
19
作者 Li Zhang Ping Wang 《Journal of Geoscience and Environment Protection》 2021年第6期155-166,共12页
This study takes Kunming City, Yunnan Province, China as the research area, to provide reference basis for revealing the change law of land use structure and energy consumption and carbon emissions in Kunming, optimiz... This study takes Kunming City, Yunnan Province, China as the research area, to provide reference basis for revealing the change law of land use structure and energy consumption and carbon emissions in Kunming, optimizing land use structure and realizing the development of low-carbon city. Based on the data of land use structure and energy consumption in Kunming from 1997 to 2017, based on the estimation of total energy consumption carbon emissions, carbon intensity and per capita carbon emissions, the correlation between land use structure and energy consumption carbon emissions in Kunming has been calculated and analyzed in the past 20 years. Results: 1) The total amount of carbon emissions in Kunming has increased significantly in the past 20 years. It increased from 34.46 × 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> t to 95.09 × 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> t, an increase of about 2.8 times. 2) The types of land use with the highest correlation between land use structure and total carbon emissions of energy consumption, carbon emission intensity and per capita carbon emissions are urban and village and industrial and mining land (0.8258), cultivated land (0.8733) and garden land (0.7971) respectively. 3) The correlation between construction land and total carbon emissions is greater than that of agricultural land. Conclusion: There is a close correlation between land use structure and carbon emissions from energy consumption in Kunming. 展开更多
关键词 Kunming City Land Use structure energy Consumption Carbon Emissions Correlation Degree
下载PDF
Adjusting and Optimizing Structure of Energy Sources for Power Generation of Fujian Province in the 21st Century
20
作者 Chen Chaozhu(Fujian Provincial Electric Power Bureau) 《Electricity》 1997年第3期8-12,共5页
The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear p... The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear power for adjusting the structure of energy sources and heightening economic benefits.and suggests that the first liquefied natural gas combined-cycle power plant will start to build at the end of this century and every effort is made so as to change the recent unreasonable structure of energy source step by step and form the optimized structure of energy sources for generating power, that includes hydropower, thermal power (coal, oil and natural gas), nuclear power, pumpedstorage power, and power from new energy sources. In order to reach the abovementioned significant target, the author discusses the technical and economic measures and the supporting policy to be taken at present and in future. 展开更多
关键词 energy SOURCES GENERATING POWER structure optimization NUCLEAR POWER
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部