Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destinat...Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.展开更多
In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the s...In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the source node, but also nearer to the destination node with respect to its sender, An energ-aware routing protocol based on ET is proposed. It enables the energy consumption for each hop to be the least for the transmission. The simulation results show the routing protocol is effective in the performance of energy consumption comparing with some other routing protocols.展开更多
Internet of Things(IoT)is a recent paradigm to improve human lifestyle.Nowadays,number devices are connected to the Internet drastically.Thus,the people can control and monitor the physical things in real-time without...Internet of Things(IoT)is a recent paradigm to improve human lifestyle.Nowadays,number devices are connected to the Internet drastically.Thus,the people can control and monitor the physical things in real-time without delay.The IoT plays a vital role in all kind of fields in our world such as agriculture,livestock,transport,and healthcare,grid system,connected home,elderly people carrying system,cypher physical system,retail,and intelligent systems.In IoT energy conservation is a challenging task,as the devices are made up of low-cost and low-power sensing devices and local processing.IoT networks have significant challenges in two areas:network lifespan and energy usage.Therefore,the clustering is a right choice to prolong the energy in the network.In LEACH clustering protocol,sometimes the same node acts as CH again and again probabilistically.To overcome these issues,this paper proposes the Energy-Aware Cluster-based Routing(EACRLEACH)protocol in WSN based IoT.The Cluster Head(CH)selection is a crucial task in clustering protocol inWSN based IoT.In EACR-LEACH,the CH is selected by using the routing metrics,Residual Energy(RER),Number of Neighbors(NoN),Distance between Sensor Node and Sink(Distance)and Number of Time Node Act as CH(NTNACH).An extensive simulation is conducted on MATLAB 2019a.The accomplishment of EACR-LEACH is compared to LEACH and SE-LEACH.The proposed EACR-LEACH protocol extends the network’s lifetime by 4%-8%and boosts throughput by 16%–24%.展开更多
This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc...This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.展开更多
Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. W...Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.展开更多
The two-phase replication-based routing has great prospects for Delay Tolerant Mobile Sensor Network (DTMSN) with its advantage of high message delivery ratio, but the blind spraying and the low efficiency forwarding ...The two-phase replication-based routing has great prospects for Delay Tolerant Mobile Sensor Network (DTMSN) with its advantage of high message delivery ratio, but the blind spraying and the low efficiency forwarding algorithm directly influences the overall network performance. Considering the characteristic of the constrained energy and storage resources of sensors, we propose a novel two-phase multi-replica routing for DTMSN, called Energy-Aware Sociality-Based Spray and Search Routing (ESR), which implements the quota-style message replication mechanism by utilizing the energy and speed information of sensors. In addition, based on the difference of history encounters, a sociality metric is defined to improve the forwarding efficiency in search phase. Simulation experiments show that ESR can reduce the message delay and improve the resource utilization while maximizing the message delivery ratio compared with the exiting popular two-phase routing protocols.展开更多
Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolera...Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolerant routing scheme, termed as ELFR was propsed to adapt to the harsh environment. First a network robustness model was presented. Based on this model, the route discovery phase was designed to make the sensors to construct into a hop-leveled network which is mesh structure. A cross-layer design was adopted to measure the transmission delay so as to detect the failed nodes. The routing scheme works with acknowledge (ACK) feedback mechanism to transfer control messages to avoid producing extra control overhead messages. When nodes fail, the new healthy paths will be selected locally without rerouting. Simulation results show that our scheme is much robust, and it achieves better energy efficiency, load balancing and maintains good end-to-end delay.展开更多
To cope with the problem of low protocol efficiency of the standard ad hoc on-demand distance vector (AODV) routing protocol with the periodic Hello message broadcast mechanism, a new link availability prediction ba...To cope with the problem of low protocol efficiency of the standard ad hoc on-demand distance vector (AODV) routing protocol with the periodic Hello message broadcast mechanism, a new link availability prediction based strategy is introduced to reduce the amount of Hello messages. In this strategy, a novel wireless link availability prediction model under line-of-sight (LOS) propagation environments is proposed based on which the parameter of Hello Interval in AODV can be dynamically adjusted to achieve the goal of changing the frequency of Hello message broadcasts under different link stability degrees. Simulation results demonstrate that, compared with the standard AODV with the periodic Hello message broadcast mechanism, the proposed protocol effectively reduces unnecessary control message overhead and greatly improves the performance in terms of end-to-end delay and efficiency.展开更多
Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is sc...Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.展开更多
Most knowledgeable people agree that networking and routing technologies have been around about 25 years. Routing is simultaneously the most complicated function of a network and the most important. It is of the same ...Most knowledgeable people agree that networking and routing technologies have been around about 25 years. Routing is simultaneously the most complicated function of a network and the most important. It is of the same kind that more than 70% of computer application fields are MIS applications. So the challenge in building and using a MIS in the network is developing the means to find, access, and communicate large databases or multi databases systems. Because general databases are not time continuous, in fact, they can not be streaming, so we can't obtain reliable and secure quality of service by deleting some unimportant datagrams in the databases transmission. In this article, we will discuss which kind of routing protocol is the best type for large databases or multi databases systems transmission in the networks.展开更多
To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer ro...To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.展开更多
As a core technology of Intemet of Things (loT), Wireless Sensor Network (WSN) has become a research hotspot recently. More and more WSNs are being deployed in highly mobile environments. The fast moving sensor no...As a core technology of Intemet of Things (loT), Wireless Sensor Network (WSN) has become a research hotspot recently. More and more WSNs are being deployed in highly mobile environments. The fast moving sensor nodes bring significant challenges for the routing decision. In this paper, we propose an efficient logical location method, and designe a mobility estimating metric and derive a novel Green Mobility Estirmtion- based Routing protocol (G-MER) for WSNs. We also set up a full framework to evaluate its per- formance. Simulation results illustrate that G-MER achieves a fairly better perforrmnce in terrm of broadcast times and link failures than AODV. What's more, it decreases the mean hops by about 0.25 and reduces energy consumption by about 10% during the whole experiment. All the results show that G-MER can be effectively used in fast- moving and limited resource scenarios.展开更多
In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad ho...In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.展开更多
Due to the increasing number of wireless mobile devices,the possibility of mobile communications without infrastructure becomes a reality.The Decentralized Mobile Social Network(DMSN) is a paradigm where nodes can mov...Due to the increasing number of wireless mobile devices,the possibility of mobile communications without infrastructure becomes a reality.The Decentralized Mobile Social Network(DMSN) is a paradigm where nodes can move freely and organize themselves arbitrarily.Routing in these environments is difficult for the reason of the rapid changes of the social relationship graph's topology.Meanwhile,the social ties among nodes change overtime.Therefore,an efficient data forwarding mechanism should be considered over the temporal weighted relationship graph.In this paper,an Advanced routing Protocol based on Parameters Optimization in the Weighted mobile social network(APPOW) is proposed to improve the delivery success ratio and reduce the cost of exchanging information.APPOW combines the normalized relative weights of three local social metrics,i.e.,LinkRank,similarity and contact strength,to select the next relay node.The weights of the three metrics are derived by pair-wise learning algorithm.The result shows that APPOW outperforms the state-ofthe-art SimBet Routing in delivering message and significantly reduces the average hops.Additionally,the delivery performance of APPOW is close to Epidemic Routing but without message duplications.展开更多
Wireless Mesh Network (WMN) is seen as an effective Intemet access solution for dynamic wireless applications. For the low mobility of mesh routers in WMN, the backbone topography can be effectively maintained by pr...Wireless Mesh Network (WMN) is seen as an effective Intemet access solution for dynamic wireless applications. For the low mobility of mesh routers in WMN, the backbone topography can be effectively maintained by proactive routing protocol. Pre-proposals like Tree Based Routing (TBR) protocol and Root Driven Routing (RDR) protocol are so centralized that they make the gateway becorre a bottleneck which severely restricts the network performance. We proposed an Optimized Tree-based Routing (OTR) protocol that logically separated the proactive tree into pieces. Route is partly computed by the branches instead of root. We also discussed the operation of multipie Intemet gateways which is a main issue in WMN. The new proposal lightens the load in root, reduces the overhead and improves the throughput. Numerical analysis and simulation results confirm that the perforrmnce of WMN is improved and OTR is more suitable for large scale WMN.展开更多
Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad h...Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.展开更多
Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology ch...Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
This paper provides a deep evaluation of the energy consumption of routing protocols. The evaluation is done along with other metrics such as throughput and packet delivery ratio (PDR). We introduce two more metrics t...This paper provides a deep evaluation of the energy consumption of routing protocols. The evaluation is done along with other metrics such as throughput and packet delivery ratio (PDR). We introduce two more metrics to capture the efficiency of the energy consumption: e-throughput and e-PDR. Both are ratios in relation to the energy. We consider the three low layers of the stack. Three types of routing protocols are used: proactive, reactive, and hybrid. At the MAC and PHY layer, three radio types are considered: 802.11a/b/g. Finally, the number of nodes is varying in random topologies, with nodes being static or mobile. Simulations are conducted using NS3. The parameters of a real network interface card are used. From the results in mobile position scenarios, no protocol is outperforming the others;even if OLSR has the lowest energy consumption, most of the time. However, in constant position scenarios, AODV consumed a lower energy, apart from the scenarios using the 802.11a standard where HWMP energy consumption is the lowest. Regarding the energy efficiency, AODV protocols provided the best e-throughput and OLSR the best e-PDR in overall configurations. A framework for selecting energy-efficient routing protocol depending on network characteristics is proposed at the end.展开更多
Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries a...Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries as a powersource and replacing them is not an easy task. With this restriction, the sensornodes must conserve their energy and extend the network lifetime as long as possible.Also, these limits motivate much of the research to suggest solutions in alllayers of the protocol stack to save energy. So, energy management efficiencybecomes a key requirement in WSN design. The efficiency of these networks ishighly dependent on routing protocols directly affecting the network lifetime.Clustering is one of the most popular techniques preferred in routing operations.In this work we propose a novel energy-efficient protocol for WSN based on a batalgorithm called ECO-BAT (Energy Consumption Optimization with BAT algorithmfor WSN) to prolong the network lifetime. We use an objective function thatgenerates an optimal number of sensor clusters with cluster heads (CH) to minimizeenergy consumption. The performance of the proposed approach is comparedwith Low-Energy Adaptive Clustering Hierarchy (LEACH) and EnergyEfficient cluster formation in wireless sensor networks based on the Multi-Objective Bat algorithm (EEMOB) protocols. The results obtained are interestingin terms of energy-saving and prolongation of the network lifetime.展开更多
This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmiss...This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmission efficiency within vehicle ad-hoc networks(VANETs).The roadside service unit plays the role of local controller and is in charge of selecting vehicles to forward packets within a road segment.All the vehicles state in the road.Correspondingly,a two-level design is used.The global level is distributed and adopts a ranked query scheme to collect vehicle information and determine the road segments along which a message should be forwarded.On the other hand,the local level is in charge of selecting forwarding vehicles in each road segment determined by the global level.We implement two routing algorithms of SVAO,and compare their performance in our simulation.We compare SVAO with popular ad-hoc network routing protocols,including Optimized Link State Routing(OLSR),Dynamic Source Routing(DSR),Destination Sequence Distance Vector(DSDV),and distance-based routing protocol(DB)via simulations.We consider the impact of vehicle density,speed on data transmission rate and average packet delay.The simulation results show that SVAO performs better than the others in large-scale networks or with high vehicle speeds.展开更多
文摘Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.
基金Supported by the National Natural Science Foun-dation of China (60572049) the Natural Science Foundation ofHubei Province of China (2005ABA264)
文摘In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the source node, but also nearer to the destination node with respect to its sender, An energ-aware routing protocol based on ET is proposed. It enables the energy consumption for each hop to be the least for the transmission. The simulation results show the routing protocol is effective in the performance of energy consumption comparing with some other routing protocols.
基金We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/313),Taif University,Taif,Saudi Arabia.
文摘Internet of Things(IoT)is a recent paradigm to improve human lifestyle.Nowadays,number devices are connected to the Internet drastically.Thus,the people can control and monitor the physical things in real-time without delay.The IoT plays a vital role in all kind of fields in our world such as agriculture,livestock,transport,and healthcare,grid system,connected home,elderly people carrying system,cypher physical system,retail,and intelligent systems.In IoT energy conservation is a challenging task,as the devices are made up of low-cost and low-power sensing devices and local processing.IoT networks have significant challenges in two areas:network lifespan and energy usage.Therefore,the clustering is a right choice to prolong the energy in the network.In LEACH clustering protocol,sometimes the same node acts as CH again and again probabilistically.To overcome these issues,this paper proposes the Energy-Aware Cluster-based Routing(EACRLEACH)protocol in WSN based IoT.The Cluster Head(CH)selection is a crucial task in clustering protocol inWSN based IoT.In EACR-LEACH,the CH is selected by using the routing metrics,Residual Energy(RER),Number of Neighbors(NoN),Distance between Sensor Node and Sink(Distance)and Number of Time Node Act as CH(NTNACH).An extensive simulation is conducted on MATLAB 2019a.The accomplishment of EACR-LEACH is compared to LEACH and SE-LEACH.The proposed EACR-LEACH protocol extends the network’s lifetime by 4%-8%and boosts throughput by 16%–24%.
基金supported by Northern Border University,Arar,KSA,through the Project Number“NBU-FFR-2024-2248-02”.
文摘This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.
基金This work was supported by the National Key Basic Re- search Program of China under Grant No. 2011 CB302702 the National Natural Science Foundation of China under Grants No. 61132001, No. 61120106008, No. 61070187, No. 60970133, No. 61003225 the Beijing Nova Program.
文摘Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.
基金supported by National Natural Science Foundation of China under Grant No.60802016, 60972010 and No.61100217by China Fundamental Research Funds for the Central Universities under Grant No. 2011JBM002,2011YJS017
文摘The two-phase replication-based routing has great prospects for Delay Tolerant Mobile Sensor Network (DTMSN) with its advantage of high message delivery ratio, but the blind spraying and the low efficiency forwarding algorithm directly influences the overall network performance. Considering the characteristic of the constrained energy and storage resources of sensors, we propose a novel two-phase multi-replica routing for DTMSN, called Energy-Aware Sociality-Based Spray and Search Routing (ESR), which implements the quota-style message replication mechanism by utilizing the energy and speed information of sensors. In addition, based on the difference of history encounters, a sociality metric is defined to improve the forwarding efficiency in search phase. Simulation experiments show that ESR can reduce the message delay and improve the resource utilization while maximizing the message delivery ratio compared with the exiting popular two-phase routing protocols.
基金The National Natural Science Foundation of China (No. 60602029, No. 60772088)
文摘Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolerant routing scheme, termed as ELFR was propsed to adapt to the harsh environment. First a network robustness model was presented. Based on this model, the route discovery phase was designed to make the sensors to construct into a hop-leveled network which is mesh structure. A cross-layer design was adopted to measure the transmission delay so as to detect the failed nodes. The routing scheme works with acknowledge (ACK) feedback mechanism to transfer control messages to avoid producing extra control overhead messages. When nodes fail, the new healthy paths will be selected locally without rerouting. Simulation results show that our scheme is much robust, and it achieves better energy efficiency, load balancing and maintains good end-to-end delay.
基金The National High Technology Research and Development Program of China (863Program)(No2006AA01Z268)
文摘To cope with the problem of low protocol efficiency of the standard ad hoc on-demand distance vector (AODV) routing protocol with the periodic Hello message broadcast mechanism, a new link availability prediction based strategy is introduced to reduce the amount of Hello messages. In this strategy, a novel wireless link availability prediction model under line-of-sight (LOS) propagation environments is proposed based on which the parameter of Hello Interval in AODV can be dynamically adjusted to achieve the goal of changing the frequency of Hello message broadcasts under different link stability degrees. Simulation results demonstrate that, compared with the standard AODV with the periodic Hello message broadcast mechanism, the proposed protocol effectively reduces unnecessary control message overhead and greatly improves the performance in terms of end-to-end delay and efficiency.
文摘Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.
基金Supported by National Natural Science Foundation of China(6 98730 2 7)
文摘Most knowledgeable people agree that networking and routing technologies have been around about 25 years. Routing is simultaneously the most complicated function of a network and the most important. It is of the same kind that more than 70% of computer application fields are MIS applications. So the challenge in building and using a MIS in the network is developing the means to find, access, and communicate large databases or multi databases systems. Because general databases are not time continuous, in fact, they can not be streaming, so we can't obtain reliable and secure quality of service by deleting some unimportant datagrams in the databases transmission. In this article, we will discuss which kind of routing protocol is the best type for large databases or multi databases systems transmission in the networks.
基金supported by the National Natural Science Foundationof China (60873195 61070220)+3 种基金the Natural Science Foundation of Anhui Province (070412049)the Outstanding Young Teacher Foundation of Anhui Higher Education Institutions of China (2009SQRZ167)the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2009B114)the Open Project Program of Engineering Research Center of Safety Critical Industry Measure and Control Technology (SCIMCT0802)
文摘To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.
基金This paper was partially supported by the National Natural Science Foundation of China under Crants No. 61003283, No. 61001122 Beijing Natural Science Foundation of China under Crants No. 4102064+2 种基金 the Natural Science Foundation of Jiangsu Province under Crant No. BK2011171 the National High-Tech Research and Development Program of China under Crant No. 2011 AA010701 the Fundamental Research Funds for the Cen- tral Universities under Ccants No. 2011RC0507, No. 2012RO3603.
文摘As a core technology of Intemet of Things (loT), Wireless Sensor Network (WSN) has become a research hotspot recently. More and more WSNs are being deployed in highly mobile environments. The fast moving sensor nodes bring significant challenges for the routing decision. In this paper, we propose an efficient logical location method, and designe a mobility estimating metric and derive a novel Green Mobility Estirmtion- based Routing protocol (G-MER) for WSNs. We also set up a full framework to evaluate its per- formance. Simulation results illustrate that G-MER achieves a fairly better perforrmnce in terrm of broadcast times and link failures than AODV. What's more, it decreases the mean hops by about 0.25 and reduces energy consumption by about 10% during the whole experiment. All the results show that G-MER can be effectively used in fast- moving and limited resource scenarios.
基金This Paper is supported by the National Natural Science Foundation of China(Grants Nos.61761035,41761086,61461037,61661041).
文摘In recent years,with the rapid development of the Internet and wireless communication technology,wireless Ad hoc networks have received more attention.Due to the limited transmission range and energy of nodes in Ad hoc networks,it is important to establish a reliable and energy-balanced transmission path in Ad hoc networks.This paper proposes an energy-based dynamic routing protocol based on the existing AODV routing protocol,which has the following two aspects of improvement:(1)In the route discovery process,a node selects a suitable route from the minimum energy consumption route and the energy-balanced route designed in this paper according to a“Mark”bit that representing remaining energy of a node.(2)Based on(1),a route interruption update strategy was proposed to restart the route discovery process when node energy was used excessively.Simulation results demonstrate that compared with AODV and other existing routing protocols,proposed algorithm can reduce network energy consumption and balance node energy,thus extending the network lifetime.
基金supported by NSFC (Grant No. 61172074, 61471028, 61371069, and 61272505)Fundamental Research Funds for the Central Universities under Grant No. 2015JBM016+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20130009110015the financial support from China Scholarship Council
文摘Due to the increasing number of wireless mobile devices,the possibility of mobile communications without infrastructure becomes a reality.The Decentralized Mobile Social Network(DMSN) is a paradigm where nodes can move freely and organize themselves arbitrarily.Routing in these environments is difficult for the reason of the rapid changes of the social relationship graph's topology.Meanwhile,the social ties among nodes change overtime.Therefore,an efficient data forwarding mechanism should be considered over the temporal weighted relationship graph.In this paper,an Advanced routing Protocol based on Parameters Optimization in the Weighted mobile social network(APPOW) is proposed to improve the delivery success ratio and reduce the cost of exchanging information.APPOW combines the normalized relative weights of three local social metrics,i.e.,LinkRank,similarity and contact strength,to select the next relay node.The weights of the three metrics are derived by pair-wise learning algorithm.The result shows that APPOW outperforms the state-ofthe-art SimBet Routing in delivering message and significantly reduces the average hops.Additionally,the delivery performance of APPOW is close to Epidemic Routing but without message duplications.
基金Acknowledgements This paper was supported by the Major National Science and Technology program under Grant No. 2011ZX03005-002 the National Natural Science Foundation of China under Grant No. 61100233 the Fundamental Universities under Grant No Research Funds for the Central K50510030010.
文摘Wireless Mesh Network (WMN) is seen as an effective Intemet access solution for dynamic wireless applications. For the low mobility of mesh routers in WMN, the backbone topography can be effectively maintained by proactive routing protocol. Pre-proposals like Tree Based Routing (TBR) protocol and Root Driven Routing (RDR) protocol are so centralized that they make the gateway becorre a bottleneck which severely restricts the network performance. We proposed an Optimized Tree-based Routing (OTR) protocol that logically separated the proactive tree into pieces. Route is partly computed by the branches instead of root. We also discussed the operation of multipie Intemet gateways which is a main issue in WMN. The new proposal lightens the load in root, reduces the overhead and improves the throughput. Numerical analysis and simulation results confirm that the perforrmnce of WMN is improved and OTR is more suitable for large scale WMN.
文摘Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.
文摘This paper provides a deep evaluation of the energy consumption of routing protocols. The evaluation is done along with other metrics such as throughput and packet delivery ratio (PDR). We introduce two more metrics to capture the efficiency of the energy consumption: e-throughput and e-PDR. Both are ratios in relation to the energy. We consider the three low layers of the stack. Three types of routing protocols are used: proactive, reactive, and hybrid. At the MAC and PHY layer, three radio types are considered: 802.11a/b/g. Finally, the number of nodes is varying in random topologies, with nodes being static or mobile. Simulations are conducted using NS3. The parameters of a real network interface card are used. From the results in mobile position scenarios, no protocol is outperforming the others;even if OLSR has the lowest energy consumption, most of the time. However, in constant position scenarios, AODV consumed a lower energy, apart from the scenarios using the 802.11a standard where HWMP energy consumption is the lowest. Regarding the energy efficiency, AODV protocols provided the best e-throughput and OLSR the best e-PDR in overall configurations. A framework for selecting energy-efficient routing protocol depending on network characteristics is proposed at the end.
文摘Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries as a powersource and replacing them is not an easy task. With this restriction, the sensornodes must conserve their energy and extend the network lifetime as long as possible.Also, these limits motivate much of the research to suggest solutions in alllayers of the protocol stack to save energy. So, energy management efficiencybecomes a key requirement in WSN design. The efficiency of these networks ishighly dependent on routing protocols directly affecting the network lifetime.Clustering is one of the most popular techniques preferred in routing operations.In this work we propose a novel energy-efficient protocol for WSN based on a batalgorithm called ECO-BAT (Energy Consumption Optimization with BAT algorithmfor WSN) to prolong the network lifetime. We use an objective function thatgenerates an optimal number of sensor clusters with cluster heads (CH) to minimizeenergy consumption. The performance of the proposed approach is comparedwith Low-Energy Adaptive Clustering Hierarchy (LEACH) and EnergyEfficient cluster formation in wireless sensor networks based on the Multi-Objective Bat algorithm (EEMOB) protocols. The results obtained are interestingin terms of energy-saving and prolongation of the network lifetime.
基金partially supported by National Key Research and Development Program of China(2016YFB0200400)National Natural Science Foundation of China(No.61379157)+1 种基金Program of Science and Technology of Guangdong(No.2015B010111001)MOE-CMCC Joint Research Fund of China(No.MCM20160104)
文摘This paper comes up with a SDN Based Vehicle Ad-Hoc On-Demand Routing Protocol(SVAO),which separates the data forwarding layer and network control layer,as in software defined networking(SDN),to enhance data transmission efficiency within vehicle ad-hoc networks(VANETs).The roadside service unit plays the role of local controller and is in charge of selecting vehicles to forward packets within a road segment.All the vehicles state in the road.Correspondingly,a two-level design is used.The global level is distributed and adopts a ranked query scheme to collect vehicle information and determine the road segments along which a message should be forwarded.On the other hand,the local level is in charge of selecting forwarding vehicles in each road segment determined by the global level.We implement two routing algorithms of SVAO,and compare their performance in our simulation.We compare SVAO with popular ad-hoc network routing protocols,including Optimized Link State Routing(OLSR),Dynamic Source Routing(DSR),Destination Sequence Distance Vector(DSDV),and distance-based routing protocol(DB)via simulations.We consider the impact of vehicle density,speed on data transmission rate and average packet delay.The simulation results show that SVAO performs better than the others in large-scale networks or with high vehicle speeds.