The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of gua...This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.展开更多
The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typic...The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.展开更多
East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment...East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment is not installed on the Shinkansen,but there are plans to introduce ATO or driverless operation in the near future.From 2018-2021,the Ministry of Land,Infrastructure,Transport and Tourism(MLIT)held the“ATO Technology Study Group for Railways”in which the concept of technical requirements necessary for driverless operation was discussed.In 2021,JR East conducted the GOA4 demonstration test on the Joetsu Shinkansen.In this test,we were able to confirm the basic functions of Shinkansen vehicles such as automatic departure control,speed control,fixed position stop control,and remote stop control using ATO.We aim to realize unattended operation(GOA4)for deadhead trains between Niigata Station and the Niigata Shinkansen Rolling Stock Center by the end of the 2020 s,and driverless operation(GOA3)for passenger trains of the Joetsu Shinkansen by the mid-2030s and continue to develop the necessary technologies and build systems.展开更多
With deep development of state grid’s system of "Three Sets of Five [1]", China is in urgent need of establishing an appropriate type of simulation system to rapidly improve operation efficiency and the lev...With deep development of state grid’s system of "Three Sets of Five [1]", China is in urgent need of establishing an appropriate type of simulation system to rapidly improve operation efficiency and the level of maintainers, which aim at the integrated operation of substation operation and maintenance service. This article gives an introduction of a simulation training system which is designed for operation-skills training in electrical systems. By the composition of the multiple subjects and skills training for operations staff, this system can provide human guarantee and intellectual support for the "Big-Centralized Overhal".展开更多
Background This work aims to provide an overview of the Mixed Reality(MR)technology’s use in maritime industry for training purposes.Current training procedures cover a broad range of procedural operations for Life-S...Background This work aims to provide an overview of the Mixed Reality(MR)technology’s use in maritime industry for training purposes.Current training procedures cover a broad range of procedural operations for Life-Saving Appliances(LSA)lifeboats;however,several gaps and limitations have been identified related to the practical training that can be addressed through the use of MR.Augmented,Virtual and Mixed Reality applications are already used in various fields in maritime industry,but their full potential have not been yet exploited.SafePASS project aims to exploit MR advantages in the maritime training by introducing a relevant application focusing on use and maintenance of LSA lifeboats.Methods An MR Training application is proposed supporting the training of crew members in equipment usage and operation,as well as in maintenance activities and procedures.The application consists of the training tool that trains crew members on handling lifeboats,the training evaluation tool that allows trainers to assess the performance of trainees,and the maintenance tool that supports crew members to perform maintenance activities and procedures on lifeboats.For each tool,an indicative session and scenario workflow are implemented,along with the main supported interactions of the trainee with the equipment.Results The application has been tested and validated both in lab environment and using a real LSA lifeboat,resulting to improved experience for the users that provided feedback and recommendations for further development.The application has also been demonstrated onboard a cruise ship,showcasing the supported functionalities to relevant stakeholders that recognized the added value of the application and suggested potential future exploitation areas.Conclusions The MR Training application has been evaluated as very promising in providing a user-friendly training environment that can support crew members in LSA lifeboat operation and maintenance,while it is still subject to improvement and further expansion.展开更多
Objective To explore the recent and distant effects of early active training after the operation for lumber intervertebral disc herniation.Method 79 patients after the operation for mono segmental lumber intervertebra...Objective To explore the recent and distant effects of early active training after the operation for lumber intervertebral disc herniation.Method 79 patients after the operation for mono segmental lumber intervertebral disc herniation had been divided into early active training group and routine control group randomly, and accepted training, regular re-examination, and follow-up of 1~6 years respedtively.Results The early active training group had better recent and distant objective effect, and more patients (97.6%) were satisfied with the operational effects.Conclusions The early active training after the operation for lumber intervertebral disc herniation is positive significant for operational effects.展开更多
Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of...Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of train trips and rolling stocks considering the time-varying demand of urban rail passenger flow.Design/methodology/approach–The authors optimize the train operational plan in a special network layout,i.e.an urban rail corridor with dead-end terminal yard,by decomposing it into two sub-problems:train timetable optimization and rolling stock circulation optimization.As for train timetable optimization,the authors propose a schedule-based passenger flow assignment method,construct the corresponding timetabling optimization model and design the bi-directional coordinated sequential optimization algorithm.For the optimization of rolling stock circulation,the authors construct the corresponding optimization assignment model and adopt the Hungary algorithm for solving the model.Findings–The case study shows that the train operational plan developed by the study’s approach meets requirements on the passenger service quality and reduces the operational cost to the maximum by minimizing the numbers of train trips and rolling stocks.Originality/value–The example verifies the efficiency of the model and algorithm.展开更多
An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluati...An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.展开更多
To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as...To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as a research object.Firstly,the train control model is established by considering the train operation requirements.Secondly,the dueling network and DDQN ideas are introduced to prevent the value function overestimation problem.Finally,the priority experience playback and“restricted speed arrival time”are used to reduce the useless experience utilization.The experiments are carried out to verify the train operation strategy method by simulating the actual line conditions.From the experimental results,the train operation meets the ATO requirements,the energy consumption is 15.75%more energy-efficient than the actual operation,and the algorithm convergence speed is improved by about 37%.The improved DQN method not only enhances the efficiency of the algorithm but also forms a more effective operation strategy than the actual operation,thereby contributing meaningfully to the advancement of automatic train operation intelligence.展开更多
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op...A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.展开更多
The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the tr...The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.展开更多
Training needs analysis is the preliminary step in a cyclical process which adds to the overall training and progress strategy of staff in a generation power plant or a professional group, questionnaires were distribu...Training needs analysis is the preliminary step in a cyclical process which adds to the overall training and progress strategy of staff in a generation power plant or a professional group, questionnaires were distributed among WAJPCO (Wadi Al Jizzi Power Company) staff and their responses were used to conduct a training need and gap analyses with a view to identify the operational skill and the training needs of the generation power plant, the time and travel commitment the industry is willing to invest in employee training, and an understanding of what skills are considered specific to lumber manufacturing and what can be combined with the needs of other industries and taught locally.展开更多
This study proposes a method of interactive plant simulation modeling which delivers the online simulated results to the field operators and induces them to take proper actions in the case of pre-identified accident s...This study proposes a method of interactive plant simulation modeling which delivers the online simulated results to the field operators and induces them to take proper actions in the case of pre-identified accident scenarios in a chemical plant. The developed model integrates the real-time process dynamic simulation with 3DCFD accident simulation in a designed interface using object linking and embedding technology so that it can convey to trainees the online information of the accident which is not available in existing operator training systems.The model encompasses the whole process of data transfer till the end of the training at which a trainee operates an emergency shutdown system in a programmed model. In this work, an overall scenario is simulated which is from an abnormal increase in the main valve discharge(second)pressure due to valve malfunction to accidental gas release through the crack of a pressure recorder, and the magnitude of the accident with respect to the lead time of each trainee's emergency response is analyzed. The model can improve the effectiveness of the operator training system through interactively linking the trainee actions with the simulation model resulting in different accident scenarios with respect to each trainee's competence when facing an accident.展开更多
System operators and planners develop and implement restoration plans based on off-line simulation studies, and accumulated experience and knowledge. One of the challenges in developing a restoration plan is to sift t...System operators and planners develop and implement restoration plans based on off-line simulation studies, and accumulated experience and knowledge. One of the challenges in developing a restoration plan is to sift through numerous possible restoration scenarios and paths, in order to identify those that are technically feasible. When implementing a restoration plan in an on-line environment following a blackout, the operators need to adapt to the actual outage scenarios and available resources, and be constantly mindful of anticipated voltage and frequency excursions that must remain within system and equipment tolerances. In recognition of these challenges, EPRI has developed System Restoration Navigator (SRN), to provide decision support to system restoration planning and operations engineers in developing, evaluating and revising system restoration strategies, guidelines, plans and step-by-step procedures. During 2013-2014, EPRI developed SRN version 3.0, which is designed to facilitate its integration into a commercial operator training simulator (OTS) (AKA a dispatch training simulator, DTS). The integration of SRN 3.0 with an OTS allows operators to obtain experience in simulating, developing, experimenting with and revising system restoration plans, and to address related regulatory standards. The integration expands the usability of SRN 3.0 by providing the OTS platform for training purposes and for the purpose of interfacing SRN 3.0 with operational power system models to be able to explore near real time application of SRN 3.0. This 2013-2014 development work also included the integration of SRN 3.0 into EPRI OTS, and its application on the Florida Reliability Coordinating Council (FRCC) power system. A detailed account of development of SRN 3.0, its integration into EPRI OTS and its application to FRCC system is presented in this paper.展开更多
The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in indust...The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for lowspeed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.展开更多
Crane operators control mobile or stationary cranes to lift, move and place objects at locations such as building and construction sites, wharves and shi<span>pyards. This activity occurs all over the world and ...Crane operators control mobile or stationary cranes to lift, move and place objects at locations such as building and construction sites, wharves and shi<span>pyards. This activity occurs all over the world and is a high risk task with many</span><span> noted examples of serious incidents and accidents. There are identifiable key causes that have been noted through analysis of the well documented cases </span><span>and many of these causes are preventable through effective training programs</span><span>. Internationally, there are not currently consistent approaches to crane operator training program content or duration. Leading causes of crane accidents are firstly discussed and identified as areas for inclusion in training programs. A number of current training approaches from a range of countries are then </span><span>considered and these are used to outline the basis of a generic competency </span><span>standard for crane operation, as it was found that there are not common standards</span><span> in place. The proposed competency standard can be adapted by training regulators, training providers, government agencies, industry bodies and </span><span>enterprises as a benchmark for the development of effective training pr</span><span>ograms.</span>展开更多
AIM:To establish a recording system with a direct view of the surgeon to supplement video recording under an operating microscope,which lacks information on the movement and position of the surgeon’s hands,and to fac...AIM:To establish a recording system with a direct view of the surgeon to supplement video recording under an operating microscope,which lacks information on the movement and position of the surgeon’s hands,and to facilitate the reproduction of a skilled surgeon’s technique by a surgeon in training.METHODS:A small camera was attached to the operating microscope with a custom adapter.Microscopic surgeon’s view and direct surgeon’s view through this new camera were recorded in the surgical recording system.Both movies were synchronized and analyzed how do surgeons handle the instruments.RESULTS:A small camera attached to the operating microscope allowed the surgeon’s hands motion to be recorded without interfering with the surgeon’s movements.Different surgeons used different methods to manipulate the ultrasound handpiece and the irrigation/aspiration device.Even in the simple paracentesis procedure,different surgeons used different methods.Surgeons-in-training were able to identify and improve their weaknesses by watching synchronized movies of their hand motions and microscopic view.CONCLUSION:Simultaneous recording the surgical field out of the operating microscopic view by a small camera set on the microscope is comprehensive and improves surgeons-in-training understanding and learning surgeries.展开更多
Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,...Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.展开更多
Background:This study aims to develop and validate a Structured Training Effectiveness Evaluation(STEE)tool based on the Kirkpatrick model for newly graduated registered nurses in the operating room in China.Methods:T...Background:This study aims to develop and validate a Structured Training Effectiveness Evaluation(STEE)tool based on the Kirkpatrick model for newly graduated registered nurses in the operating room in China.Methods:The first phase will involve focus group and individual interviews with nursing educators and newly graduated registered nurses selected using purposive sampling.The data will be analyzed thematically to identify key components necessary to develop the STEE tool.The second phase will develop and validate the STEE tool through a panel of experts using the Delphi method.The item weights will be determined with the analytic hierarchy process technique.The third phase will involve implementation and evaluation of the STEE tool with an exploratory,nonexperimental,and comparative analysis.Descriptive and inferential statistical analyses will be performed with SPSS version 23.Results:The STEE tool for newly graduated registered nurses in the operating room will be useful for evaluating training effectiveness during standardized training.The results obtained with this tool will clarify the effectiveness of training,thereby helping transform nursing students into competent nurses.Conclusion:In this way,this study will provide practical guidance for improving standardized training programs and help newly graduated nurses manage their transition to the clinical work environment and remain in their posts.展开更多
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
基金supported jointly by the National Natural Science Foundation of China(61703033,61790573)Beijing Natural Science Foundation(4192046)+1 种基金Fundamental Research Funds for Central Universities(2018JBZ002)State Key Laboratory of Rail Traffic Control and Safety(RCS2018ZT013),Beijing Jiaotong University
文摘This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.
基金supported by the National Natural Science Foundation of China(Grant No.51705267)China Postdoctoral Science Foundation Grant(Grant No.2018M630750)+1 种基金National Natural Science Foundation of China(Grant No.51605397)Natural Science Foundation of Shandong Province,China(Grant No.ZR2014EEP002).
文摘The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.
文摘East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment is not installed on the Shinkansen,but there are plans to introduce ATO or driverless operation in the near future.From 2018-2021,the Ministry of Land,Infrastructure,Transport and Tourism(MLIT)held the“ATO Technology Study Group for Railways”in which the concept of technical requirements necessary for driverless operation was discussed.In 2021,JR East conducted the GOA4 demonstration test on the Joetsu Shinkansen.In this test,we were able to confirm the basic functions of Shinkansen vehicles such as automatic departure control,speed control,fixed position stop control,and remote stop control using ATO.We aim to realize unattended operation(GOA4)for deadhead trains between Niigata Station and the Niigata Shinkansen Rolling Stock Center by the end of the 2020 s,and driverless operation(GOA3)for passenger trains of the Joetsu Shinkansen by the mid-2030s and continue to develop the necessary technologies and build systems.
文摘With deep development of state grid’s system of "Three Sets of Five [1]", China is in urgent need of establishing an appropriate type of simulation system to rapidly improve operation efficiency and the level of maintainers, which aim at the integrated operation of substation operation and maintenance service. This article gives an introduction of a simulation training system which is designed for operation-skills training in electrical systems. By the composition of the multiple subjects and skills training for operations staff, this system can provide human guarantee and intellectual support for the "Big-Centralized Overhal".
基金Supported by the Safe PASS project that has received funding from the European Union’s Horizon 2020 Research and Innovation programme (815146)。
文摘Background This work aims to provide an overview of the Mixed Reality(MR)technology’s use in maritime industry for training purposes.Current training procedures cover a broad range of procedural operations for Life-Saving Appliances(LSA)lifeboats;however,several gaps and limitations have been identified related to the practical training that can be addressed through the use of MR.Augmented,Virtual and Mixed Reality applications are already used in various fields in maritime industry,but their full potential have not been yet exploited.SafePASS project aims to exploit MR advantages in the maritime training by introducing a relevant application focusing on use and maintenance of LSA lifeboats.Methods An MR Training application is proposed supporting the training of crew members in equipment usage and operation,as well as in maintenance activities and procedures.The application consists of the training tool that trains crew members on handling lifeboats,the training evaluation tool that allows trainers to assess the performance of trainees,and the maintenance tool that supports crew members to perform maintenance activities and procedures on lifeboats.For each tool,an indicative session and scenario workflow are implemented,along with the main supported interactions of the trainee with the equipment.Results The application has been tested and validated both in lab environment and using a real LSA lifeboat,resulting to improved experience for the users that provided feedback and recommendations for further development.The application has also been demonstrated onboard a cruise ship,showcasing the supported functionalities to relevant stakeholders that recognized the added value of the application and suggested potential future exploitation areas.Conclusions The MR Training application has been evaluated as very promising in providing a user-friendly training environment that can support crew members in LSA lifeboat operation and maintenance,while it is still subject to improvement and further expansion.
文摘Objective To explore the recent and distant effects of early active training after the operation for lumber intervertebral disc herniation.Method 79 patients after the operation for mono segmental lumber intervertebral disc herniation had been divided into early active training group and routine control group randomly, and accepted training, regular re-examination, and follow-up of 1~6 years respedtively.Results The early active training group had better recent and distant objective effect, and more patients (97.6%) were satisfied with the operational effects.Conclusions The early active training after the operation for lumber intervertebral disc herniation is positive significant for operational effects.
基金funded by the National Natural Science Foundation of China(71701216,71171200).
文摘Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of train trips and rolling stocks considering the time-varying demand of urban rail passenger flow.Design/methodology/approach–The authors optimize the train operational plan in a special network layout,i.e.an urban rail corridor with dead-end terminal yard,by decomposing it into two sub-problems:train timetable optimization and rolling stock circulation optimization.As for train timetable optimization,the authors propose a schedule-based passenger flow assignment method,construct the corresponding timetabling optimization model and design the bi-directional coordinated sequential optimization algorithm.For the optimization of rolling stock circulation,the authors construct the corresponding optimization assignment model and adopt the Hungary algorithm for solving the model.Findings–The case study shows that the train operational plan developed by the study’s approach meets requirements on the passenger service quality and reduces the operational cost to the maximum by minimizing the numbers of train trips and rolling stocks.Originality/value–The example verifies the efficiency of the model and algorithm.
文摘An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.
文摘To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as a research object.Firstly,the train control model is established by considering the train operation requirements.Secondly,the dueling network and DDQN ideas are introduced to prevent the value function overestimation problem.Finally,the priority experience playback and“restricted speed arrival time”are used to reduce the useless experience utilization.The experiments are carried out to verify the train operation strategy method by simulating the actual line conditions.From the experimental results,the train operation meets the ATO requirements,the energy consumption is 15.75%more energy-efficient than the actual operation,and the algorithm convergence speed is improved by about 37%.The improved DQN method not only enhances the efficiency of the algorithm but also forms a more effective operation strategy than the actual operation,thereby contributing meaningfully to the advancement of automatic train operation intelligence.
基金This work was supported by the Youth Backbone Teachers Training Program of Henan Colleges and Universities under Grant No.2016ggjs-287the Project of Science and Technology of Henan Province under Grant Nos.172102210124 and 202102210269.
文摘A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.
文摘The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.
文摘Training needs analysis is the preliminary step in a cyclical process which adds to the overall training and progress strategy of staff in a generation power plant or a professional group, questionnaires were distributed among WAJPCO (Wadi Al Jizzi Power Company) staff and their responses were used to conduct a training need and gap analyses with a view to identify the operational skill and the training needs of the generation power plant, the time and travel commitment the industry is willing to invest in employee training, and an understanding of what skills are considered specific to lumber manufacturing and what can be combined with the needs of other industries and taught locally.
基金supported by a Grant No. (14IFIP-B085984-03) from Smart Civil Infrastructure Research Program funded by the Korea Government Ministry of Land,Infrastructure and Transport (MOLIT) and The Korea Agency for Infrastructure Technology Advancement(KAIA)by Korea Ministry of Environment (MOE) as ‘the Chemical Accident Prevention Technology Development Project’ (No. 2015001950003)
文摘This study proposes a method of interactive plant simulation modeling which delivers the online simulated results to the field operators and induces them to take proper actions in the case of pre-identified accident scenarios in a chemical plant. The developed model integrates the real-time process dynamic simulation with 3DCFD accident simulation in a designed interface using object linking and embedding technology so that it can convey to trainees the online information of the accident which is not available in existing operator training systems.The model encompasses the whole process of data transfer till the end of the training at which a trainee operates an emergency shutdown system in a programmed model. In this work, an overall scenario is simulated which is from an abnormal increase in the main valve discharge(second)pressure due to valve malfunction to accidental gas release through the crack of a pressure recorder, and the magnitude of the accident with respect to the lead time of each trainee's emergency response is analyzed. The model can improve the effectiveness of the operator training system through interactively linking the trainee actions with the simulation model resulting in different accident scenarios with respect to each trainee's competence when facing an accident.
文摘System operators and planners develop and implement restoration plans based on off-line simulation studies, and accumulated experience and knowledge. One of the challenges in developing a restoration plan is to sift through numerous possible restoration scenarios and paths, in order to identify those that are technically feasible. When implementing a restoration plan in an on-line environment following a blackout, the operators need to adapt to the actual outage scenarios and available resources, and be constantly mindful of anticipated voltage and frequency excursions that must remain within system and equipment tolerances. In recognition of these challenges, EPRI has developed System Restoration Navigator (SRN), to provide decision support to system restoration planning and operations engineers in developing, evaluating and revising system restoration strategies, guidelines, plans and step-by-step procedures. During 2013-2014, EPRI developed SRN version 3.0, which is designed to facilitate its integration into a commercial operator training simulator (OTS) (AKA a dispatch training simulator, DTS). The integration of SRN 3.0 with an OTS allows operators to obtain experience in simulating, developing, experimenting with and revising system restoration plans, and to address related regulatory standards. The integration expands the usability of SRN 3.0 by providing the OTS platform for training purposes and for the purpose of interfacing SRN 3.0 with operational power system models to be able to explore near real time application of SRN 3.0. This 2013-2014 development work also included the integration of SRN 3.0 into EPRI OTS, and its application on the Florida Reliability Coordinating Council (FRCC) power system. A detailed account of development of SRN 3.0, its integration into EPRI OTS and its application to FRCC system is presented in this paper.
基金funding of the SAMIRA project by the European Regional Development Fund under grant number 0801689
文摘The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for lowspeed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.
文摘Crane operators control mobile or stationary cranes to lift, move and place objects at locations such as building and construction sites, wharves and shi<span>pyards. This activity occurs all over the world and is a high risk task with many</span><span> noted examples of serious incidents and accidents. There are identifiable key causes that have been noted through analysis of the well documented cases </span><span>and many of these causes are preventable through effective training programs</span><span>. Internationally, there are not currently consistent approaches to crane operator training program content or duration. Leading causes of crane accidents are firstly discussed and identified as areas for inclusion in training programs. A number of current training approaches from a range of countries are then </span><span>considered and these are used to outline the basis of a generic competency </span><span>standard for crane operation, as it was found that there are not common standards</span><span> in place. The proposed competency standard can be adapted by training regulators, training providers, government agencies, industry bodies and </span><span>enterprises as a benchmark for the development of effective training pr</span><span>ograms.</span>
文摘AIM:To establish a recording system with a direct view of the surgeon to supplement video recording under an operating microscope,which lacks information on the movement and position of the surgeon’s hands,and to facilitate the reproduction of a skilled surgeon’s technique by a surgeon in training.METHODS:A small camera was attached to the operating microscope with a custom adapter.Microscopic surgeon’s view and direct surgeon’s view through this new camera were recorded in the surgical recording system.Both movies were synchronized and analyzed how do surgeons handle the instruments.RESULTS:A small camera attached to the operating microscope allowed the surgeon’s hands motion to be recorded without interfering with the surgeon’s movements.Different surgeons used different methods to manipulate the ultrasound handpiece and the irrigation/aspiration device.Even in the simple paracentesis procedure,different surgeons used different methods.Surgeons-in-training were able to identify and improve their weaknesses by watching synchronized movies of their hand motions and microscopic view.CONCLUSION:Simultaneous recording the surgical field out of the operating microscopic view by a small camera set on the microscope is comprehensive and improves surgeons-in-training understanding and learning surgeries.
基金This research was supported by the National Natural Science Foundation of China(Grant No.71971016).On behalf of all co-authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.
基金Peking University Health Science Center,Grant/Award Number:2019YB30。
文摘Background:This study aims to develop and validate a Structured Training Effectiveness Evaluation(STEE)tool based on the Kirkpatrick model for newly graduated registered nurses in the operating room in China.Methods:The first phase will involve focus group and individual interviews with nursing educators and newly graduated registered nurses selected using purposive sampling.The data will be analyzed thematically to identify key components necessary to develop the STEE tool.The second phase will develop and validate the STEE tool through a panel of experts using the Delphi method.The item weights will be determined with the analytic hierarchy process technique.The third phase will involve implementation and evaluation of the STEE tool with an exploratory,nonexperimental,and comparative analysis.Descriptive and inferential statistical analyses will be performed with SPSS version 23.Results:The STEE tool for newly graduated registered nurses in the operating room will be useful for evaluating training effectiveness during standardized training.The results obtained with this tool will clarify the effectiveness of training,thereby helping transform nursing students into competent nurses.Conclusion:In this way,this study will provide practical guidance for improving standardized training programs and help newly graduated nurses manage their transition to the clinical work environment and remain in their posts.