With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simu...With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simultaneously.To enhance the forecasting performance,a novel edge-enabled probabilistic graph structure learning model(PGSLM)is proposed,which learns the graph structure and parameters by the edge sensing information and discrete probability distribution on the edges of the traffic road network.To obtain the spatio-temporal dependencies of traffic data,the learned dynamic graphs are combined with a predefined static graph to generate the graph convolution part of the recurrent graph convolution module.During the training process,a new graph training loss is introduced,which is composed of the K nearest neighbor(KNN)graph constructed by the traffic feature tensors and the graph structure.Detailed experimental results show that,compared with existing models,the proposed PGSLM improves the traffic prediction performance in terms of average absolute error and root mean square error in IoV.展开更多
Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the t...Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the thinnest unit to bulk crystals. Ultrathin Bi (111) bilayers have been theoretically proposed as a two-dimensional topological insulator. The related experimental realization achieved only recently, by growing Bi (111) ultrathin bilayers on topological insulator Bi2Te3 or Bi2Se3 substrates. In this review, we started from the growth mode of Bi (111) bilayers and reviewed our recent progress in the studies of the electronic structures and the one-dimensional topological edge states using scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and first principles calculations.展开更多
The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-ar...The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-array of Mach/Langmuir probes. In the experiments of Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam injection (SMBI), Multi-shot Pellet Injection (MPI) and Neutral Beam injection (NBI), the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The results indicate that a sheared poloidal flow can be generated in Tokamak plasma due to radially varying Reynolds stress.展开更多
This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a ...This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.展开更多
Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It...Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It firstly calculates every edge pixel's horizontal coordinate grads to produce the corresponding grads-edge, then uses a designed length-variable l D template to scan the light-stripes' grads-edges. The template is able to find the disturbances with different width utilizing the distributing character of the edge disturbances. The found disturbances are eliminated finally. The algorithm not only can smoothly segment the light-stripes images, but also eliminate most disturbances on the light-stripes' edges without damaging the light-stripes images' 3D information. A practical example of using the proposed algorithm is given in the end. It is proved that the efficiency of the algorithm has been improved obviously by comparison.展开更多
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana...In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.展开更多
Based on the general theory of dislocation and kink, we have constructed the three kink models corresponding to the 1/2 (111){011} and 1/2 (111){112} edge dislocations (EDs) in bcc Fe using the molecular dynamic...Based on the general theory of dislocation and kink, we have constructed the three kink models corresponding to the 1/2 (111){011} and 1/2 (111){112} edge dislocations (EDs) in bcc Fe using the molecular dynamics method. We found that the geometric structure of a kink depends on the type of ED and the structural energies of the atom sites in the dislocation core region, as well as the geometric symmetry of the dislocation core and the characteristic of the stacking sequence of atomic plane along the dislocation line. The formation energies and widths of the kinks on the 1/2 (111){011} and 1/2 (111){112} EDs are calculated, the formation energies are 0.05eV and 0.04eV, and widths are 6.02b and 6.51b, respectively (b is the magnitude of the Burgers vector). The small formation energies indicate that the formation of kink in the edge dislocation is very easy in bcc Fe.展开更多
Ab initio density functional theory calculations are carried out to predict the electronic properties and relative stability of gallium sulfide nanoribbons(Ga2S2-NRs) with either zigzag- or armchair-terminated edges. ...Ab initio density functional theory calculations are carried out to predict the electronic properties and relative stability of gallium sulfide nanoribbons(Ga2S2-NRs) with either zigzag- or armchair-terminated edges. It is found that the electronic properties of the nanoribbons are very sensitive to the edge structure. The zigzag nanoribbons(Ga2S2-ZNRs)are ferromagnetic(FM) metallic with spin-polarized edge states regardless of the H-passivation, whereas the bare armchair ones(Ga2S2-ANRs) are semiconducting with an indirect band gap. This band gap exhibits an oscillation behavior as the width increases and finally converges to a constant value. Similar behavior is also found in H-saturated Ga2S2-ANRs,although the band gap converges to a larger value. The relative stabilities of the bare ANRs and ZNRs are investigated by calculating their binding energies. It is found that for a similar width the ANRs are more stable than the ZNRs, and both are more stable than some Ga2S2nanoclusters with stable configurations.展开更多
Aiming to increase the efficiency of gem design and manufacturing, a new method in computer-aided-design (CAD) of convex faceted gem cuts (CFGC) based on Half-edge data structure (HDS), including the algorithms for th...Aiming to increase the efficiency of gem design and manufacturing, a new method in computer-aided-design (CAD) of convex faceted gem cuts (CFGC) based on Half-edge data structure (HDS), including the algorithms for the implementation is presented in this work. By using object-oriented methods, geometrical elements of CFGC are classified and responding geometrical feature classes are established. Each class is implemented and embedded based on the gem process. Matrix arithmetic and analytical geometry are used to derive the affine transformation and the cutting algorithm. Based on the demand for a diversity of gem cuts, CAD functions both for free-style faceted cuts and parametric designs of typical cuts and visualization and human-computer interactions of the CAD system including two-dimensional and three-dimensional interactions have been realized which enhances the flexibility and universality of the CAD system. Furthermore, data in this CAD system can also be used directly by the gem CAM module, which will promote the gem CAD/CAM integration.展开更多
Edge detection plays an important role in geological interpretation of potential field data,which can indicate the subsurface faults,contact,and other tectonic features.A variety of methods have been proposed to detec...Edge detection plays an important role in geological interpretation of potential field data,which can indicate the subsurface faults,contact,and other tectonic features.A variety of methods have been proposed to detect and enhance the edges.3 D structure tensor can well delineate the edges of geological bodies,however,it is sensitive to noise and additional false edges need to be removed artificially.In order to overcome these disadvantages,this paper redefines the 3 D structure tensor with a Gaussian envelop and proposes a new normalized edge detector,which can remove the additional false edges and reduce the influence of noise effectively,and balance the edges of different amplitude anomalies completely.This method has been tested on the synthetic and measured gravity data,showing that the new improved method achievesbetter results and reveals more details.展开更多
Edge detection is a commonly requested task in the interpretation of potential field data. Different methods have different results for varied depths and shapes of geological bodies. In this paper,we propose using the...Edge detection is a commonly requested task in the interpretation of potential field data. Different methods have different results for varied depths and shapes of geological bodies. In this paper,we propose using the combination of structure tensor and tilt angle to detect the edges of the sources,which can display the edges of shallow and deep bodies simultaneously. Through tests on synthetic potential field data,it is obvious that the proposed edge detection methods can display the sources edges more clearly and precisely,compared with other commonly used methods. The application on real potential field data shows similar result,obtaining the edges of layers and faults clearly. In addition,another advantage of the new method is its insensitivity to noise.展开更多
Connecting three zigzag graphene nanoribbons(ZGNRs) together through the sp^3 hybrid bonds forms a star-like ZGNR(S-ZGNR). Its band structure shows that there are four edge states at k = 0.5, in which the three el...Connecting three zigzag graphene nanoribbons(ZGNRs) together through the sp^3 hybrid bonds forms a star-like ZGNR(S-ZGNR). Its band structure shows that there are four edge states at k = 0.5, in which the three electrons distribute at three outside edge sites, and the last electron is shared equally(50%) by two sites near the central site. The lowest conductance step in the valley is 2, two times higher than that of monolayer ZGNR(M-ZGNR). Furthermore, in one quasithree-dimensional hexagonal lattice built, both of the Dirac points and the zero-energy states appear in the band structure along the z-axis for the fixed zero k-point in the x-y plane. In addition, it is an insulator in the x-y plane due to band gap 4 eV, however, for any k-point in the x-y plane the zero-energy states always exist at kz = 0.5.展开更多
This paper describes the analysis of the thermal stress concentration and the effects of geometrical shape in the interfacial edge by FEM. It is shown that the elevated stress in a dissim...This paper describes the analysis of the thermal stress concentration and the effects of geometrical shape in the interfacial edge by FEM. It is shown that the elevated stress in a dissimilar material caused by temperature is only restricted in a minor region of the interfacial edge, where the stress peak value and and the stress gradient are high. It is also found that narrowing the boundary angle can effectively reduce the peak value of stress components on the interfacial layer, especially the peeling stress σ y , which is a condition of the debonding failure in the interface.θ=60, an obvious variation, proves that selecting a reasonable edge geometrical shape helps to reduce the value of the maximum stress. At last the methods of relaxing stress concentration and effects of the geometric blunt are also discussed.展开更多
Human's real life is within a colorful world. Compared to the gray images, color images contain more information and have better visual effects. In today's digital image processing, image segmentation is an im...Human's real life is within a colorful world. Compared to the gray images, color images contain more information and have better visual effects. In today's digital image processing, image segmentation is an important section for computers to "understand" images and edge detection is always one of the most important methods in the field of image segmentation. Edges in color images are considered as local discontinuities both in color and spatial domains. Despite the intensive study based on integration of single-channel edge detection results, and on vector space analysis, edge detection in color images remains as a challenging issue.展开更多
The weak pre-edge features in the Mn K-edge X-ray absorption near-edge structure (XANES) spectrumof manganese monoxide (MnO) were investigated by comparing experimental data with dipolar and quadrupolarcross-section c...The weak pre-edge features in the Mn K-edge X-ray absorption near-edge structure (XANES) spectrumof manganese monoxide (MnO) were investigated by comparing experimental data with dipolar and quadrupolarcross-section calculations in the framework of multiple-scattering theory. We assign the first pre-edge feature to a di-rect quadrupolar transition from Is core state to 3d molecular orbitals of the central atom, e.g., the lowest in energy,due to the more effective attraction of the core hole. The second peak in this region arises unambiguously from thehybridization between p-orbitals of the central atom with higher-shell metal octahedral orbitals.展开更多
The local configurations around metal ions in metalloproteins are of great significance for understanding their biolog- ical functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and...The local configurations around metal ions in metalloproteins are of great significance for understanding their biolog- ical functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and plays an important role in lots of physiological functions. The three-dimensional (3D) structural configurations of Cu2+/His complexes at different pH values (2.5, 6.5, and 8.5) are quantitatively determined by x-ray absorption near-edge structure (XANES). Generally Cu2+/His complex keeps an octahedral configuration consisting of oxygen atoms from water molecules and oxygen or nitrogen atoms from histidine molecules coordinated around Cu2+. It is proved in this work that the oxygen atoms from water molecules, when increasing the pH value from acid to basic value, are gradually substituted by the Ocarboxy1, Nam, and Nim from hisitidine molecules. Furthermore, the symmetries of Cu2+/His complexes at pH 6.5 and pH 8.5 are found to be lower than at pH 2.5.展开更多
The chemisorbed structure for an aromatic molecule on a silicon surface plays an important part in promoting the development of organic semiconductor material science. The carbon K-shell x-ray photoelectron spectrosc...The chemisorbed structure for an aromatic molecule on a silicon surface plays an important part in promoting the development of organic semiconductor material science. The carbon K-shell x-ray photoelectron spectroscopy(XPS) and the x-ray absorption near-edge structure(XANES) spectra of the interfacial structure of an s-triazine molecule adsorbed on Si(100) surface have been performed by the first principles, and the landscape of the s-triazine molecule on Si(100) surface has been described in detail. Both the XPS and XANES spectra have shown their dependence on different structures for the pristine s-triazine molecule and its several possible adsorbed configurations. By comparison with the XPS spectra, the XANES spectra display the strongest structural dependency of all of the studied systems and thus could be well applied to identify the chemisorbed s-triazine derivatives. The exploration of spectral components originated from non-equivalent carbons in disparate local environments has also been implemented for both the XPS and XANES spectra of s-triazine adsorbed configurations.展开更多
A multiple-scattering chtster method is employed to calculate the oxygen K-edge near-edge X-ray absorption fine structure of N20/Ir(110) and its monolayer. Two peaks and one weak resonance appear in both cases. The ...A multiple-scattering chtster method is employed to calculate the oxygen K-edge near-edge X-ray absorption fine structure of N20/Ir(110) and its monolayer. Two peaks and one weak resonance appear in both cases. The self- consistent field DV-Xa calculations of the peaks and resonance show that the physical origin of the pre-edge peak x is different from those of the main peak 1 and the other weak resonance al. This setup is intrinsic to the N20 monolayer, owing to the interaction between the neighbouring molecular chains in the monolayer and partly to the adsorbed atomic oxygen, according to both the theoretical and experimental data.展开更多
Identifying important nodes and edges in complex networks has always been a popular research topic in network science and also has important implications for the protection of real-world complex systems.Finding the cr...Identifying important nodes and edges in complex networks has always been a popular research topic in network science and also has important implications for the protection of real-world complex systems.Finding the critical structures in a system allows us to protect the system from attacks or failures with minimal cost.To date,the problem of identifying critical nodes in networks has been widely studied by many scholars,and the theory is becoming increasingly mature.However,there is relatively little research related to edges.In fact,critical edges play an important role in maintaining the basic functions of the network and keeping the integrity of the structure.Sometimes protecting critical edges is less costly and more flexible in operation than just focusing on nodes.Considering the integrity of the network topology and the propagation dynamics on it,this paper proposes a centrality measure based on the number of high-order structural overlaps in the first and second-order neighborhoods of edges.The effectiveness of the metric is verified by the infection-susceptibility(SI)model,the robustness index R,and the number of connected branchesθ.A comparison is made with three currently popular edge importance metrics from two synthetic and four real networks.The simulation results show that the method outperforms existing methods in identifying critical edges that have a significant impact on both network connectivity and propagation dynamics.At the same time,the near-linear time complexity can be applied to large-scale networks.展开更多
There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
基金supported by the project of the National Natural Science Foundation of China(No.61772562)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010225)the Fundamental Research Funds for the Central Universities(No.2662022YJ012)。
文摘With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simultaneously.To enhance the forecasting performance,a novel edge-enabled probabilistic graph structure learning model(PGSLM)is proposed,which learns the graph structure and parameters by the edge sensing information and discrete probability distribution on the edges of the traffic road network.To obtain the spatio-temporal dependencies of traffic data,the learned dynamic graphs are combined with a predefined static graph to generate the graph convolution part of the recurrent graph convolution module.During the training process,a new graph training loss is introduced,which is composed of the K nearest neighbor(KNN)graph constructed by the traffic feature tensors and the graph structure.Detailed experimental results show that,compared with existing models,the proposed PGSLM improves the traffic prediction performance in terms of average absolute error and root mean square error in IoV.
基金supported by the National Basic Research Program of China (Grants Nos. 2012CB927401,2011CB921902,2013CB921902,and 2011CB922200)the National Natural Science Foundation of China (Grants Nos. 91021002,11174199,11134008,and 11274228)SCSTC (Grant Nos. 11JC1405000,11PJ1405200,and 12JC1405300)
文摘Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the thinnest unit to bulk crystals. Ultrathin Bi (111) bilayers have been theoretically proposed as a two-dimensional topological insulator. The related experimental realization achieved only recently, by growing Bi (111) ultrathin bilayers on topological insulator Bi2Te3 or Bi2Se3 substrates. In this review, we started from the growth mode of Bi (111) bilayers and reviewed our recent progress in the studies of the electronic structures and the one-dimensional topological edge states using scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and first principles calculations.
文摘The measurement on radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric field have been performed in the plasma boundary region of the HL-IM Tokamak using a multi-array of Mach/Langmuir probes. In the experiments of Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam injection (SMBI), Multi-shot Pellet Injection (MPI) and Neutral Beam injection (NBI), the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The results indicate that a sheared poloidal flow can be generated in Tokamak plasma due to radially varying Reynolds stress.
基金Project supported by the National Natural Science Foundation of China (Grant No 102750770)
文摘This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by X-ray absorption near edge structure spectra and X-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.
基金This project is supported by National Natural Science Foundation of China (No.50275120, No.50535030)Great Science and Technology Project of Xi'an City, China(No.CX200206)
文摘Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It firstly calculates every edge pixel's horizontal coordinate grads to produce the corresponding grads-edge, then uses a designed length-variable l D template to scan the light-stripes' grads-edges. The template is able to find the disturbances with different width utilizing the distributing character of the edge disturbances. The found disturbances are eliminated finally. The algorithm not only can smoothly segment the light-stripes images, but also eliminate most disturbances on the light-stripes' edges without damaging the light-stripes images' 3D information. A practical example of using the proposed algorithm is given in the end. It is proved that the efficiency of the algorithm has been improved obviously by comparison.
文摘In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB605102)the Science Foundation of Central South University of Forestry & Technology,China (Grant No 06y016)
文摘Based on the general theory of dislocation and kink, we have constructed the three kink models corresponding to the 1/2 (111){011} and 1/2 (111){112} edge dislocations (EDs) in bcc Fe using the molecular dynamics method. We found that the geometric structure of a kink depends on the type of ED and the structural energies of the atom sites in the dislocation core region, as well as the geometric symmetry of the dislocation core and the characteristic of the stacking sequence of atomic plane along the dislocation line. The formation energies and widths of the kinks on the 1/2 (111){011} and 1/2 (111){112} EDs are calculated, the formation energies are 0.05eV and 0.04eV, and widths are 6.02b and 6.51b, respectively (b is the magnitude of the Burgers vector). The small formation energies indicate that the formation of kink in the edge dislocation is very easy in bcc Fe.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174220 and 11374226)the Key Scientific Research Project of the Henan Institutions of Higher Learning(Grant No.16A140009)+1 种基金the Program for Innovative Research Team of Henan Polytechnic University(Grant Nos.T2015-3 and T2016-2)the Doctoral Foundation of Henan Polytechnic University(Grant No.B2015-46)
文摘Ab initio density functional theory calculations are carried out to predict the electronic properties and relative stability of gallium sulfide nanoribbons(Ga2S2-NRs) with either zigzag- or armchair-terminated edges. It is found that the electronic properties of the nanoribbons are very sensitive to the edge structure. The zigzag nanoribbons(Ga2S2-ZNRs)are ferromagnetic(FM) metallic with spin-polarized edge states regardless of the H-passivation, whereas the bare armchair ones(Ga2S2-ANRs) are semiconducting with an indirect band gap. This band gap exhibits an oscillation behavior as the width increases and finally converges to a constant value. Similar behavior is also found in H-saturated Ga2S2-ANRs,although the band gap converges to a larger value. The relative stabilities of the bare ANRs and ZNRs are investigated by calculating their binding energies. It is found that for a similar width the ANRs are more stable than the ZNRs, and both are more stable than some Ga2S2nanoclusters with stable configurations.
基金Supported by the National Natural Science Foundation of China(21576240)Experimental Technology Research Program of China University of Geosciences(Key Program)(SJ-201422)
文摘Aiming to increase the efficiency of gem design and manufacturing, a new method in computer-aided-design (CAD) of convex faceted gem cuts (CFGC) based on Half-edge data structure (HDS), including the algorithms for the implementation is presented in this work. By using object-oriented methods, geometrical elements of CFGC are classified and responding geometrical feature classes are established. Each class is implemented and embedded based on the gem process. Matrix arithmetic and analytical geometry are used to derive the affine transformation and the cutting algorithm. Based on the demand for a diversity of gem cuts, CAD functions both for free-style faceted cuts and parametric designs of typical cuts and visualization and human-computer interactions of the CAD system including two-dimensional and three-dimensional interactions have been realized which enhances the flexibility and universality of the CAD system. Furthermore, data in this CAD system can also be used directly by the gem CAM module, which will promote the gem CAD/CAM integration.
基金Supported by Project of National Major Science and Technology(No.2016ZX05026-007-01)
文摘Edge detection plays an important role in geological interpretation of potential field data,which can indicate the subsurface faults,contact,and other tectonic features.A variety of methods have been proposed to detect and enhance the edges.3 D structure tensor can well delineate the edges of geological bodies,however,it is sensitive to noise and additional false edges need to be removed artificially.In order to overcome these disadvantages,this paper redefines the 3 D structure tensor with a Gaussian envelop and proposes a new normalized edge detector,which can remove the additional false edges and reduce the influence of noise effectively,and balance the edges of different amplitude anomalies completely.This method has been tested on the synthetic and measured gravity data,showing that the new improved method achievesbetter results and reveals more details.
基金Supported by projects of National Key Research and Development Plan(Nos.2017YFC0601606,2017YFC0602203)National Science and Technology Major Project(No.2016ZX05027-002-03)+1 种基金National Natural Science Foundation of China(Nos.41604098,41404089)State Key Program of National Natural Science of China(No.41430322)
文摘Edge detection is a commonly requested task in the interpretation of potential field data. Different methods have different results for varied depths and shapes of geological bodies. In this paper,we propose using the combination of structure tensor and tilt angle to detect the edges of the sources,which can display the edges of shallow and deep bodies simultaneously. Through tests on synthetic potential field data,it is obvious that the proposed edge detection methods can display the sources edges more clearly and precisely,compared with other commonly used methods. The application on real potential field data shows similar result,obtaining the edges of layers and faults clearly. In addition,another advantage of the new method is its insensitivity to noise.
基金Project supported by the National Natural Science Foundation of China(Grant No.10947004)the Jiangsu Government Scholarship for Overseas Studies,China
文摘Connecting three zigzag graphene nanoribbons(ZGNRs) together through the sp^3 hybrid bonds forms a star-like ZGNR(S-ZGNR). Its band structure shows that there are four edge states at k = 0.5, in which the three electrons distribute at three outside edge sites, and the last electron is shared equally(50%) by two sites near the central site. The lowest conductance step in the valley is 2, two times higher than that of monolayer ZGNR(M-ZGNR). Furthermore, in one quasithree-dimensional hexagonal lattice built, both of the Dirac points and the zero-energy states appear in the band structure along the z-axis for the fixed zero k-point in the x-y plane. In addition, it is an insulator in the x-y plane due to band gap 4 eV, however, for any k-point in the x-y plane the zero-energy states always exist at kz = 0.5.
文摘This paper describes the analysis of the thermal stress concentration and the effects of geometrical shape in the interfacial edge by FEM. It is shown that the elevated stress in a dissimilar material caused by temperature is only restricted in a minor region of the interfacial edge, where the stress peak value and and the stress gradient are high. It is also found that narrowing the boundary angle can effectively reduce the peak value of stress components on the interfacial layer, especially the peeling stress σ y , which is a condition of the debonding failure in the interface.θ=60, an obvious variation, proves that selecting a reasonable edge geometrical shape helps to reduce the value of the maximum stress. At last the methods of relaxing stress concentration and effects of the geometric blunt are also discussed.
基金National Natural Science Foundation of China (No.60374071)
文摘Human's real life is within a colorful world. Compared to the gray images, color images contain more information and have better visual effects. In today's digital image processing, image segmentation is an important section for computers to "understand" images and edge detection is always one of the most important methods in the field of image segmentation. Edges in color images are considered as local discontinuities both in color and spatial domains. Despite the intensive study based on integration of single-channel edge detection results, and on vector space analysis, edge detection in color images remains as a challenging issue.
基金One of the authors(WU Zi-Yu)acknowledges the financial support of the 100-Talent Research Program of the Chinese Academy of Sciences and of the Outstanding Youth Fund(10125523)the Key Important Nano-Research Project(90206032)of the National Natural Science Founda tion of China.
文摘The weak pre-edge features in the Mn K-edge X-ray absorption near-edge structure (XANES) spectrumof manganese monoxide (MnO) were investigated by comparing experimental data with dipolar and quadrupolarcross-section calculations in the framework of multiple-scattering theory. We assign the first pre-edge feature to a di-rect quadrupolar transition from Is core state to 3d molecular orbitals of the central atom, e.g., the lowest in energy,due to the more effective attraction of the core hole. The second peak in this region arises unambiguously from thehybridization between p-orbitals of the central atom with higher-shell metal octahedral orbitals.
基金supported by the National Natural Science Foundation of China(Grant No.11205186)
文摘The local configurations around metal ions in metalloproteins are of great significance for understanding their biolog- ical functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and plays an important role in lots of physiological functions. The three-dimensional (3D) structural configurations of Cu2+/His complexes at different pH values (2.5, 6.5, and 8.5) are quantitatively determined by x-ray absorption near-edge structure (XANES). Generally Cu2+/His complex keeps an octahedral configuration consisting of oxygen atoms from water molecules and oxygen or nitrogen atoms from histidine molecules coordinated around Cu2+. It is proved in this work that the oxygen atoms from water molecules, when increasing the pH value from acid to basic value, are gradually substituted by the Ocarboxy1, Nam, and Nim from hisitidine molecules. Furthermore, the symmetries of Cu2+/His complexes at pH 6.5 and pH 8.5 are found to be lower than at pH 2.5.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874242,11804196,and 11804197)
文摘The chemisorbed structure for an aromatic molecule on a silicon surface plays an important part in promoting the development of organic semiconductor material science. The carbon K-shell x-ray photoelectron spectroscopy(XPS) and the x-ray absorption near-edge structure(XANES) spectra of the interfacial structure of an s-triazine molecule adsorbed on Si(100) surface have been performed by the first principles, and the landscape of the s-triazine molecule on Si(100) surface has been described in detail. Both the XPS and XANES spectra have shown their dependence on different structures for the pristine s-triazine molecule and its several possible adsorbed configurations. By comparison with the XPS spectra, the XANES spectra display the strongest structural dependency of all of the studied systems and thus could be well applied to identify the chemisorbed s-triazine derivatives. The exploration of spectral components originated from non-equivalent carbons in disparate local environments has also been implemented for both the XPS and XANES spectra of s-triazine adsorbed configurations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904134 and 10802083)
文摘A multiple-scattering chtster method is employed to calculate the oxygen K-edge near-edge X-ray absorption fine structure of N20/Ir(110) and its monolayer. Two peaks and one weak resonance appear in both cases. The self- consistent field DV-Xa calculations of the peaks and resonance show that the physical origin of the pre-edge peak x is different from those of the main peak 1 and the other weak resonance al. This setup is intrinsic to the N20 monolayer, owing to the interaction between the neighbouring molecular chains in the monolayer and partly to the adsorbed atomic oxygen, according to both the theoretical and experimental data.
文摘Identifying important nodes and edges in complex networks has always been a popular research topic in network science and also has important implications for the protection of real-world complex systems.Finding the critical structures in a system allows us to protect the system from attacks or failures with minimal cost.To date,the problem of identifying critical nodes in networks has been widely studied by many scholars,and the theory is becoming increasingly mature.However,there is relatively little research related to edges.In fact,critical edges play an important role in maintaining the basic functions of the network and keeping the integrity of the structure.Sometimes protecting critical edges is less costly and more flexible in operation than just focusing on nodes.Considering the integrity of the network topology and the propagation dynamics on it,this paper proposes a centrality measure based on the number of high-order structural overlaps in the first and second-order neighborhoods of edges.The effectiveness of the metric is verified by the infection-susceptibility(SI)model,the robustness index R,and the number of connected branchesθ.A comparison is made with three currently popular edge importance metrics from two synthetic and four real networks.The simulation results show that the method outperforms existing methods in identifying critical edges that have a significant impact on both network connectivity and propagation dynamics.At the same time,the near-linear time complexity can be applied to large-scale networks.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %