We examined the development of soil nematodes ecological indices from the perspective off unctionaltraits.We found that soil nematode energy flow analyses based on multiple functional traits quantify the dynamics of e...We examined the development of soil nematodes ecological indices from the perspective off unctionaltraits.We found that soil nematode energy flow analyses based on multiple functional traits quantify the dynamics of energy flow across multipletrophic levels to provide a more comprehensive perspective.We conducted comparative analyses of the sensitivities of NMF and energy flow to verify that the energy flow analyses are more sensitive and have greater potential to reveal soil health and ecosystem function.Future in-depth studies of functional traits and energy flow analysis can help us achieve informed soil management practices,sustainable agriculture,andhealthiersoilecosystems.nignerEauc Tess CT Nematode ecological index based on functional traits:MI El,S,BI,C1 NMF Bongen.1990 Ferrisetal,2001 Ferris,2010 energs low analysis of soil nematodes Compare thecological index(NMf)and Bacterivores(Ba)Functional traits Energy flux Fungihores(Fn)rahn Soilnematodes latitude Lindicator Plant-parasites(PP)PF Energflus Soilhealth Omnivores-predators(oP)latitude Energy flow analysis of soil nematodes:By quantifying energy fux among trophic groups Barbes et al.,2014,2018 This paper examines the development of ecological indices for soil nematodes from the perspective of functional traits.It emphasizes the increasing significance of integrating multiple functional traits to achieve a more accurate assessment of soil health.Ecological indices based on life history strategies,feeding habits,and body size provide useful tools for assessing soil health.However,these indices do not fully capture the dynamics ofenergyflow across multiple-trophic levels inthesoil foodweb,which is critical fora deeperunderstanding of the intrinsic properties of soil health.By combining functional traits such as functional group,body size,feeding preference and metabolic rate,nematode energy flow analyses provide a more comprehensive perspective.This approach establishes a direct correlation between changes in the morphology,physiology,and metabolism of soil organisms and alterations in their habitat environment.We conducted comparative analyses of the sensitivity of nematode metabolic footprints and energy flow to latitudinal variation using a nematode dataset from the northeastern black soil region in China.The findings suggest that energy flow analyses are more sensitive to latitude and have greater potential to reveal soil health and ecosystem function.Therefore,future research should prioritize the development of automated and efficient methods for analyzing nematode traits.This will enhance the application of energy flow analyses in nematode food webs and support the development of sustainable soil management and agriculturalpractices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42077046,31800440)the National Key Research and Development Program of China(Grant No.2022YFD1500203)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA28020401)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021228)the Young Scientist Group Project of Northeast Institute of Geography and Agroecology(Grant No.2022QNXZ04).
文摘We examined the development of soil nematodes ecological indices from the perspective off unctionaltraits.We found that soil nematode energy flow analyses based on multiple functional traits quantify the dynamics of energy flow across multipletrophic levels to provide a more comprehensive perspective.We conducted comparative analyses of the sensitivities of NMF and energy flow to verify that the energy flow analyses are more sensitive and have greater potential to reveal soil health and ecosystem function.Future in-depth studies of functional traits and energy flow analysis can help us achieve informed soil management practices,sustainable agriculture,andhealthiersoilecosystems.nignerEauc Tess CT Nematode ecological index based on functional traits:MI El,S,BI,C1 NMF Bongen.1990 Ferrisetal,2001 Ferris,2010 energs low analysis of soil nematodes Compare thecological index(NMf)and Bacterivores(Ba)Functional traits Energy flux Fungihores(Fn)rahn Soilnematodes latitude Lindicator Plant-parasites(PP)PF Energflus Soilhealth Omnivores-predators(oP)latitude Energy flow analysis of soil nematodes:By quantifying energy fux among trophic groups Barbes et al.,2014,2018 This paper examines the development of ecological indices for soil nematodes from the perspective of functional traits.It emphasizes the increasing significance of integrating multiple functional traits to achieve a more accurate assessment of soil health.Ecological indices based on life history strategies,feeding habits,and body size provide useful tools for assessing soil health.However,these indices do not fully capture the dynamics ofenergyflow across multiple-trophic levels inthesoil foodweb,which is critical fora deeperunderstanding of the intrinsic properties of soil health.By combining functional traits such as functional group,body size,feeding preference and metabolic rate,nematode energy flow analyses provide a more comprehensive perspective.This approach establishes a direct correlation between changes in the morphology,physiology,and metabolism of soil organisms and alterations in their habitat environment.We conducted comparative analyses of the sensitivity of nematode metabolic footprints and energy flow to latitudinal variation using a nematode dataset from the northeastern black soil region in China.The findings suggest that energy flow analyses are more sensitive to latitude and have greater potential to reveal soil health and ecosystem function.Therefore,future research should prioritize the development of automated and efficient methods for analyzing nematode traits.This will enhance the application of energy flow analyses in nematode food webs and support the development of sustainable soil management and agriculturalpractices.