In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Impr...In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.展开更多
For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will...For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will inevitably lead to a substantial increase in the development cost.To improve the system price-performance ratio,a new kind of series-parallel hybrid system evolved from the series plug-in hybrid system is designed.According to the technical parameters of the selected components,the system model is established,and the vehicle dynamic property and pure electric drive economy are evaluated.Based on the dynamic programming,the energy management strategy for the drive system under the city driving cycle is developed,and the superiority validation of the system is completed.For the studied vehicle driven by the designed series-parallel plug-in hybrid system,compared with the one driven by the described series plug-in hybrid system,the dynamic property is significantly improved because of the multi-power coupling,and the fuel consumption is reduced by 11.4%with 10 city driving cycles.In a word,with the flexible configuration of the designed hybrid system and the optimized control strategy of the energy management,the vehicle performance can be obviously improved.展开更多
基金supported by National Key R&D Program of China (No. 2018YFB0905000)Science and Technology Project of SGCC (SGTJDK00DWJS1800232)+1 种基金National Natural Science Foundation of China (51977141)State Grid Corporation of China project: “Research on Construction Technology of Integrated Energy System for Urban Multifunctional Groups” (SGTJJY00GHJS1900040)
文摘In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.
基金supported by the National Natural Science Foundation of China(Grant No.51405259)China Postdoctoral Science Foundation funded project(Grant Nos.2014T70072&2013M530608)Colleges and Universities in Hebei Province Science and Technology Research Project(Grant No.QN2015056)
文摘For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will inevitably lead to a substantial increase in the development cost.To improve the system price-performance ratio,a new kind of series-parallel hybrid system evolved from the series plug-in hybrid system is designed.According to the technical parameters of the selected components,the system model is established,and the vehicle dynamic property and pure electric drive economy are evaluated.Based on the dynamic programming,the energy management strategy for the drive system under the city driving cycle is developed,and the superiority validation of the system is completed.For the studied vehicle driven by the designed series-parallel plug-in hybrid system,compared with the one driven by the described series plug-in hybrid system,the dynamic property is significantly improved because of the multi-power coupling,and the fuel consumption is reduced by 11.4%with 10 city driving cycles.In a word,with the flexible configuration of the designed hybrid system and the optimized control strategy of the energy management,the vehicle performance can be obviously improved.