期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Engagement Angle Modeling for Multiple-circle Continuous Machining and Its Application in the Pocket Machining 被引量:1
1
作者 Shixiong WU Wei MA +2 位作者 Haiping BAI Chengyong WANG Yuexian SONG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期256-271,共16页
The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the contro... The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the control parameter, further more there is no more appropriate adjustment and control approach. The end-users often fall to set the parameter correctly, which leads to excessive tool load in the process of actual machining. In order to make more reasonable control of the machining load and toolpath, an engagement angle modeling method for multiplecircle continuous machining is presented. The distribution mode of multiple circles, dynamic changing process of engagement angle, extreme and average value of engage- ment angle are carefully considered. Based on the engagement angle model, numerous application techniques for mould pocket machining are presented, involving the calculation of the milling force in multiple-circle continuous machining, and rough and finish machining path planning and load control for the material accumulating region inside the pocket, and other aspects. Simulation and actual machining experiments show that the engagement angle modeling method for multiple-circle continuous machining is correct and reliable, and the related numerous application techniques for pocket machining are feasible and effective. The proposed research contributes to the analysis and control tool load effectively and tool-path planning reasonably for the material accumulating region inside the mould pocket. 展开更多
关键词 Pocket · engagement angle · Milling force Circle · High·speed machining
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部