This article corrects the following:Volume 2 Issue 4 Journal of Dynamics,Monitoring and Diagnostics Inter-shaft Bearing Fault Diagnosis Based on Aero-engine System:A Benchmarking Dataset Study Pages:228-242 First Publ...This article corrects the following:Volume 2 Issue 4 Journal of Dynamics,Monitoring and Diagnostics Inter-shaft Bearing Fault Diagnosis Based on Aero-engine System:A Benchmarking Dataset Study Pages:228-242 First Published online:03 August 2023 DOI:https://doi.org/10.37965/jdmd.2023.314 On page 228 of the PDF,the following correction should be noted.The title of the above paper was night on the journal website but wrong in the published PDF version.An updated PDF version of it is provided below.展开更多
A new reliability allocation model has been built for engine system, which is a repairable system, and consists of a large number of mechanical components. The cost and reliability are taken as objective function and ...A new reliability allocation model has been built for engine system, which is a repairable system, and consists of a large number of mechanical components. The cost and reliability are taken as objective function and constraint condition respectively. The parameters of components lifetime distribution are given as decision variables, and the component lifetimes are assumed to follow that Weibull distribution. The allocation is separated into two steps to reduce calculated amount of one allocation. Genetic algorithm and Monte Carlo method are applied to solve distribution parameters and system cost separately.展开更多
The global demand for transport energy is large, growing, and primarily met by petroleum-derived liquid fuels powering internal combustion engines (ICEs). Moreover, the demand for jet fuel and diesel is projected to g...The global demand for transport energy is large, growing, and primarily met by petroleum-derived liquid fuels powering internal combustion engines (ICEs). Moreover, the demand for jet fuel and diesel is projected to grow faster than the demand for gasoline in the future, and is likely to result in low-octane gasoline components becoming more readily available. Significant initiatives with varying motivations are taking place to develop the battery electric vehicle (BEV) and the fuel cell as alternatives to ICE vehicles, and to establish fuels such as biofuels and natural gas as alternatives to conventional liquid fuels. However, each of these alternatives starts from a very low base and faces significant barriers to fast and unrestrained growth;thus, transport—and particularly commercial transport—will continue to be largely powered by ICEs running on petroleum-based liquid fuels for decades to come. Hence, the sustainability of transport in terms of affordability, energy security, and impact on greenhouse gas (GHG) emissions and air quality can only be ensured by improving ICEs. Indeed, ICEs will continue to improve while using current market fuels, through improvements in combustion, control, and after-treatment systems, assisted by partial electrification in the form of hybridization. However, there is even more scope for improvement through the development of fuel/engine systems that can additionally leverage benefits in fuels manufacture and use components that may be readily available. Gasoline compression ignition (GCI), which uses low-octane gasoline in a compression ignition engine, is one such example. GCI would enable diesel-like efficiencies while making it easier to control nitrogen oxides (NOx) and particulates at a lower cost compared with modern diesel engines. Octane on demand (OOD) also helps to ensure optimum use of available fuel anti-knock quality, and thus improves the overall efficiency of the system.展开更多
Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer ...Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer bushings with the two types of end fittings in a 500 kV substation were damaged.Post-earthquake field investigations were conducted,and the failures of the two types of bushings were compared.Two elementary simulation models of the transformer-bushing systems were developed to simulate the engineering failures,and further compute their seismic responses for comparison.The results indicate that the hitch lugs of the connection flange are structurally harmful to seismic resistance.Fitting-M can decrease the bending stiffness of the bushing due to the flexible sealing rubber gasket.Since it provides a more flexible connection that dissipates energy,the peak accelerations and relative displacements at the top of the bushing are significantly lower than those of the bushing with fitting-C.Compared with fitting-C,fitting-M transfers the high-stress areas from the connection flange to the root of the porcelain,so the latter becomes the most vulnerable component.Fitting-M increases the failure risk of the low-strength porcelain,indicating the unsuitability of applying it in high-intensity fortification regions.展开更多
Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technologi...Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technological revolution and industrial transformation to higher education,cultivating top-notch innovative intellectuals with comprehensive engineering qualities,meeting the requirements of being able to solve complex engineering problems rather than just cognitive capabilities,forming two core courses through reconstructing and reshaping the core courses of the major.The core courses include Drive,Measurement,and Control I and Drive,Measurement,and Control II,which highlight the comprehensive framework of mechanical and electronic engineering professional knowledge,continuing the comprehensive practical course system based on the unity of knowledge and practice,following the trend of new engineering,highlighting the practicality of professional innovation,assisting engineering education reform,and promoting high-quality development of new engineering professionals cultivation.展开更多
The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficultie...The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.展开更多
The report of the Chinese 20th National Congress put forward“strengthening the construction and management of textbooks”for the first time,which indicates the importance of textbook construction and highlights the v...The report of the Chinese 20th National Congress put forward“strengthening the construction and management of textbooks”for the first time,which indicates the importance of textbook construction and highlights the vital position of textbooks in the overall development of the country.From the perspective of textbook quality,and based on the research and analysis of the policy requirements and current evaluation indicators of higher education textbooks,this paper establishes the textbook quality evaluation index system composed of basic indicators and evaluation indicators.This system is based on the principles of science,comprehensiveness,operability,and target-oriented approach.It provides a relatively scientific,objective,and fair reference system for the management and evaluation of textbooks.展开更多
Seoul Metro is Seoul’s leading metro company, transporting up to 3 billion people annually. However, future ridership is expected to plummet due to an aging and shrinking population with one of the fastest declining ...Seoul Metro is Seoul’s leading metro company, transporting up to 3 billion people annually. However, future ridership is expected to plummet due to an aging and shrinking population with one of the fastest declining total fertility rates in the world. The COVID-19 pandemic in 2019 accelerated this phenomenon. On the contrary, the e-commerce and home delivery industries have developed significantly since COVID-19. Seoul’s current logistics infrastructure cannot handle it. Under the inflection point of declining passenger transportation demand and increasing urban logistics demand, urban rail operators need new growth engines. Therefore, it is necessary to consider the introduction of an UULS (underground urban logistics system) that transports parcels instead of passengers through urban railways. If the UULS becomes a reality, it can be expected to secure scarce logistics land in cities, protect the environment and prevent traffic congestion by operating eco-friendly mass urban transportation, and acquire new revenue sources for urban rail operators. The UULS’s B/C ratio is 1.32. The sensitivity analysis shows that the ratio is above 1 in most cases where the unit cost of transportation is not significantly reduced.展开更多
Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between develo...Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.展开更多
With the advancement of the construction of emerging engineering education,the reform of practical teaching has become an important task of higher engineering education.This article takes the course“Linux Operating S...With the advancement of the construction of emerging engineering education,the reform of practical teaching has become an important task of higher engineering education.This article takes the course“Linux Operating System Fundamentals”as an example to explore practical teaching reform in the context of emerging engineering education.By analyzing the current situation and problems in course practical teaching,we proposed practical teaching reforms such as online experiments,practical content updates,project-based engineering practices,and diversified evaluation models,and designed corresponding implementation plans.Practice has proved that this reform can improve students’learning interest and engineering practical skills,and cultivate outstanding engineers with innovative spirit and practical skills.展开更多
The research on the output rate performance limit of the multi-stage energy conversion system based on modern optimal control theory is one of the hot spots of finite time thermodynamics.The existing research mainly f...The research on the output rate performance limit of the multi-stage energy conversion system based on modern optimal control theory is one of the hot spots of finite time thermodynamics.The existing research mainly focuses on the multi-stage heat engine system with pure heat transfer and the multi-stage isothermal chemical engine(ICE)system with pure mass transfer,while the multi-stage non ICE system with heat and mass transfer coupling is less involved.A multistage endoreversible non-isothermal chemical engine(ENICE)system with a finite high-chemical-potential(HCP)source(driving fluid)and an infinite low-chemical-potential sink(environment)is researched.The multistage continuous system is treated as infinitesimal ENICEs located continuously.Each infinitesimal ENICE is assumed to be a single-stage ENICE with stationary reservoirs.Extending single-stage results,the maximum power output(MPO)of the multistage system is obtained.Heat and mass transfer processes between the reservoir and working fluid are assumed to obey Onsager equations.For the fixed initial time,fixed initial fluid temperature,and fixed initial concentration of key component(CKC)in the HCP source,continuous and discrete models of the multistage system are optimized.With given initial reservoir temperature,initial CKC,and total process time,the MPO of the multistage ENICE system is optimized with fixed and free final temperature and final concentration.If the final concentration and final temperature are free,there are optimal final temperature and optimal final concentration for the multistage ENICE system to achieve MPO;meanwhile,there are low limit values for final fluid temperature and final concentration.Special cases for multistage endoreversible Carnot heat engines and ICE systems are further obtained.For the model in this paper,the minimum entropy generation objective is not equivalent to MPO objective.展开更多
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas...Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ...Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
文摘This article corrects the following:Volume 2 Issue 4 Journal of Dynamics,Monitoring and Diagnostics Inter-shaft Bearing Fault Diagnosis Based on Aero-engine System:A Benchmarking Dataset Study Pages:228-242 First Published online:03 August 2023 DOI:https://doi.org/10.37965/jdmd.2023.314 On page 228 of the PDF,the following correction should be noted.The title of the above paper was night on the journal website but wrong in the published PDF version.An updated PDF version of it is provided below.
文摘A new reliability allocation model has been built for engine system, which is a repairable system, and consists of a large number of mechanical components. The cost and reliability are taken as objective function and constraint condition respectively. The parameters of components lifetime distribution are given as decision variables, and the component lifetimes are assumed to follow that Weibull distribution. The allocation is separated into two steps to reduce calculated amount of one allocation. Genetic algorithm and Monte Carlo method are applied to solve distribution parameters and system cost separately.
文摘The global demand for transport energy is large, growing, and primarily met by petroleum-derived liquid fuels powering internal combustion engines (ICEs). Moreover, the demand for jet fuel and diesel is projected to grow faster than the demand for gasoline in the future, and is likely to result in low-octane gasoline components becoming more readily available. Significant initiatives with varying motivations are taking place to develop the battery electric vehicle (BEV) and the fuel cell as alternatives to ICE vehicles, and to establish fuels such as biofuels and natural gas as alternatives to conventional liquid fuels. However, each of these alternatives starts from a very low base and faces significant barriers to fast and unrestrained growth;thus, transport—and particularly commercial transport—will continue to be largely powered by ICEs running on petroleum-based liquid fuels for decades to come. Hence, the sustainability of transport in terms of affordability, energy security, and impact on greenhouse gas (GHG) emissions and air quality can only be ensured by improving ICEs. Indeed, ICEs will continue to improve while using current market fuels, through improvements in combustion, control, and after-treatment systems, assisted by partial electrification in the form of hybridization. However, there is even more scope for improvement through the development of fuel/engine systems that can additionally leverage benefits in fuels manufacture and use components that may be readily available. Gasoline compression ignition (GCI), which uses low-octane gasoline in a compression ignition engine, is one such example. GCI would enable diesel-like efficiencies while making it easier to control nitrogen oxides (NOx) and particulates at a lower cost compared with modern diesel engines. Octane on demand (OOD) also helps to ensure optimum use of available fuel anti-knock quality, and thus improves the overall efficiency of the system.
基金National Natural Science Foundation of China under Grant No.51878508。
文摘Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer bushings with the two types of end fittings in a 500 kV substation were damaged.Post-earthquake field investigations were conducted,and the failures of the two types of bushings were compared.Two elementary simulation models of the transformer-bushing systems were developed to simulate the engineering failures,and further compute their seismic responses for comparison.The results indicate that the hitch lugs of the connection flange are structurally harmful to seismic resistance.Fitting-M can decrease the bending stiffness of the bushing due to the flexible sealing rubber gasket.Since it provides a more flexible connection that dissipates energy,the peak accelerations and relative displacements at the top of the bushing are significantly lower than those of the bushing with fitting-C.Compared with fitting-C,fitting-M transfers the high-stress areas from the connection flange to the root of the porcelain,so the latter becomes the most vulnerable component.Fitting-M increases the failure risk of the low-strength porcelain,indicating the unsuitability of applying it in high-intensity fortification regions.
文摘Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technological revolution and industrial transformation to higher education,cultivating top-notch innovative intellectuals with comprehensive engineering qualities,meeting the requirements of being able to solve complex engineering problems rather than just cognitive capabilities,forming two core courses through reconstructing and reshaping the core courses of the major.The core courses include Drive,Measurement,and Control I and Drive,Measurement,and Control II,which highlight the comprehensive framework of mechanical and electronic engineering professional knowledge,continuing the comprehensive practical course system based on the unity of knowledge and practice,following the trend of new engineering,highlighting the practicality of professional innovation,assisting engineering education reform,and promoting high-quality development of new engineering professionals cultivation.
文摘The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.
文摘The report of the Chinese 20th National Congress put forward“strengthening the construction and management of textbooks”for the first time,which indicates the importance of textbook construction and highlights the vital position of textbooks in the overall development of the country.From the perspective of textbook quality,and based on the research and analysis of the policy requirements and current evaluation indicators of higher education textbooks,this paper establishes the textbook quality evaluation index system composed of basic indicators and evaluation indicators.This system is based on the principles of science,comprehensiveness,operability,and target-oriented approach.It provides a relatively scientific,objective,and fair reference system for the management and evaluation of textbooks.
基金the Ministry of Land,Infrastructure and Transport and Korea Agency for Infrastructure Technology Advancement(22HCLP-C163194-02)。
文摘Seoul Metro is Seoul’s leading metro company, transporting up to 3 billion people annually. However, future ridership is expected to plummet due to an aging and shrinking population with one of the fastest declining total fertility rates in the world. The COVID-19 pandemic in 2019 accelerated this phenomenon. On the contrary, the e-commerce and home delivery industries have developed significantly since COVID-19. Seoul’s current logistics infrastructure cannot handle it. Under the inflection point of declining passenger transportation demand and increasing urban logistics demand, urban rail operators need new growth engines. Therefore, it is necessary to consider the introduction of an UULS (underground urban logistics system) that transports parcels instead of passengers through urban railways. If the UULS becomes a reality, it can be expected to secure scarce logistics land in cities, protect the environment and prevent traffic congestion by operating eco-friendly mass urban transportation, and acquire new revenue sources for urban rail operators. The UULS’s B/C ratio is 1.32. The sensitivity analysis shows that the ratio is above 1 in most cases where the unit cost of transportation is not significantly reduced.
文摘Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.
基金2023 China University of Geosciences(Beijing)Undergraduate Education Quality Improvement Plan Construction Project,including“Linux Operating System”Practical Teaching Reform(Project number:JG202215)“University Computer”Online Experiment Construction(Project number:JG202216)+1 种基金CUGB-Zhonggong Computer Science and Technology Off-Campus Practical Teaching Base(Project number:SSJJD202201)Ministry of Education Fund Project:Research and Development of Computer Vision Practical Courses Based on Deep Learning(Project number:2022BC003)。
文摘With the advancement of the construction of emerging engineering education,the reform of practical teaching has become an important task of higher engineering education.This article takes the course“Linux Operating System Fundamentals”as an example to explore practical teaching reform in the context of emerging engineering education.By analyzing the current situation and problems in course practical teaching,we proposed practical teaching reforms such as online experiments,practical content updates,project-based engineering practices,and diversified evaluation models,and designed corresponding implementation plans.Practice has proved that this reform can improve students’learning interest and engineering practical skills,and cultivate outstanding engineers with innovative spirit and practical skills.
基金supported by the National Natural Science Foundation of China(Grant Nos.51976235 and 52171317)。
文摘The research on the output rate performance limit of the multi-stage energy conversion system based on modern optimal control theory is one of the hot spots of finite time thermodynamics.The existing research mainly focuses on the multi-stage heat engine system with pure heat transfer and the multi-stage isothermal chemical engine(ICE)system with pure mass transfer,while the multi-stage non ICE system with heat and mass transfer coupling is less involved.A multistage endoreversible non-isothermal chemical engine(ENICE)system with a finite high-chemical-potential(HCP)source(driving fluid)and an infinite low-chemical-potential sink(environment)is researched.The multistage continuous system is treated as infinitesimal ENICEs located continuously.Each infinitesimal ENICE is assumed to be a single-stage ENICE with stationary reservoirs.Extending single-stage results,the maximum power output(MPO)of the multistage system is obtained.Heat and mass transfer processes between the reservoir and working fluid are assumed to obey Onsager equations.For the fixed initial time,fixed initial fluid temperature,and fixed initial concentration of key component(CKC)in the HCP source,continuous and discrete models of the multistage system are optimized.With given initial reservoir temperature,initial CKC,and total process time,the MPO of the multistage ENICE system is optimized with fixed and free final temperature and final concentration.If the final concentration and final temperature are free,there are optimal final temperature and optimal final concentration for the multistage ENICE system to achieve MPO;meanwhile,there are low limit values for final fluid temperature and final concentration.Special cases for multistage endoreversible Carnot heat engines and ICE systems are further obtained.For the model in this paper,the minimum entropy generation objective is not equivalent to MPO objective.
基金supported by the National Natural Science Foundation of China(52003113,31900950,82102334,82002313,82072444)the National Key Research&Development Program of China(2018YFC2001502,2018YFB1105705)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010745,2020A1515110356,2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190808120405672)the Key Program of the National Natural Science Foundation of Zhejiang Province(LZ22C100001)the Natural Science Foundation of Shanghai(20ZR1469800)the Integration Innovation Fund of Shanghai Jiao Tong University(2021JCPT03),the Science and Technology Projects of Guangzhou City(202102020359)the Zigong Key Science and Technology Plan(2022ZCNKY07).SXC thanks the financial support under the Startup Grant of the University of Chinese Academy of Sciences(WIUCASQD2021026).HW thanks the Futian Healthcare Research Project(FTWS2022013)the financial support of China Postdoctoral Science Foundation(2021TQ0118).SL thanks the financial support of China Postdoctoral Science Foundation(2022M721490).
文摘Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164 (to JC)。
文摘Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.