Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and comb...Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and combined effects of different chemical compositions of deep groundwaters(chemical factor)at potential repository sites in Canada(the Trenton and Guelph regions in Ontario),heat generated in DGRs(thermal factor),dry densities and mass ratios of bentonite and sand mixtures(physical factors)on the swelling behavior and ability of bentonite-based materials.In this study,swelling tests are conducted on B/S mixtures with different B/S mix ratios(20/80 to 70/30),compacted at different dry densities(ρd=1.6-2 g/cm^(3)),saturated with different types of water(distilled water and simulated deep groundwater of Trenton and Guelph)and exposed to different temperatures(20℃-80℃).Moreover,scanning electron microscopy(SEM)analyses,mercury intrusion porosimetry(MIP)tests and X-ray diffractometry(XRD)analyses are carried out to evaluate the morphological,microstructural and mineralogical characteristics of the B/S mixtures.The test results indicate that the swelling potential of the B/S mixtures is significantly affected by these physical and chemical factors as well as the combined effects of the chemical and thermal factors.A significant decrease in the swelling capacity is observed when the B/S materials are exposed to the aforementioned groundwaters.A large decrease in the swelling capacity is observed for higher bentonite content in the mixtures.Moreover,higher temperatures intensify the chemically-induced reduction of the swelling capacity of the B/S barrier materials.This decrease in the swelling capacity is caused by the chemical and/or microstructural changes of the materials.The results from this research will help engineers to design and build EBSs for DGRs with similar groundwater and thermal conditions.展开更多
The last decade has seen a steady proliferation in the use of tissue-engineered cell culture systems(Deforest and Anseth,2012),and these have been put to good use for studying neural axon growth and guidance(Li and...The last decade has seen a steady proliferation in the use of tissue-engineered cell culture systems(Deforest and Anseth,2012),and these have been put to good use for studying neural axon growth and guidance(Li and Hoffman-Kim,2008;Roy et al.,2013).These systems have been designed to more closely mimic the natural microenvironment of the developing or repairing nervous system and to enable spatiotemporal control over certain aspects of the microenvironment.展开更多
The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced ...The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.展开更多
The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exh...The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.展开更多
Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ),...Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones.展开更多
Objective To verify the neurotypicality of AAV-PHP.eB after tail vein injection in adult mice and its efficiency in crossing the blood-brain barrier(BBB).Methods The rAAV-SYN-GFP plasmid was constructed, and adult C57...Objective To verify the neurotypicality of AAV-PHP.eB after tail vein injection in adult mice and its efficiency in crossing the blood-brain barrier(BBB).Methods The rAAV-SYN-GFP plasmid was constructed, and adult C57 BL mice were injected with AAV PHP.eB: SYN-GFP in the tail vein(300 nL, virus titer 3 × 10~9 vg) and in the prefrontal lobe(50 L, virus tite5 × 10^(11) vg). The green fluorescent protein(GFP) signal in the brain was observed at two weeks, while the GFP signal in the peripheral organs was observed at four weeks. Results Two weeks after tail vein injection, GFP expression was observed throughout the brain especially in the cortex, hippocampus, and geniculate nucleus. No GFP signal was observed or detected by western blotting in the peripheral organs after four weeks. GFP signal was observed mainly at the loca site after prefrontal lobe injection.Conclusion AAV-PHP.eB: SYN-GFP can effectively cross the BBB in adult mice. Using a neuron-specific promoter allows exogenous gene expression in neurons; therefore, AAV-PHP.eB can be used as an effective carrier for studying diseases in the central nervous system(CNS).展开更多
With gene engineering EB virus membrane antigen as the diagnostic antigen, indirect immunofluo-rescence (IF) assay was used to detect IgA antibody against EB virus membrane antigen (MA-IgA) in sera from 202 nasopharyn...With gene engineering EB virus membrane antigen as the diagnostic antigen, indirect immunofluo-rescence (IF) assay was used to detect IgA antibody against EB virus membrane antigen (MA-IgA) in sera from 202 nasopharyngeal carcinoma (NPC) patients and 315 controls (normal and patients with other tumors). MA-IgA antibody was positive in 96.8% of the pretreatment NPC patients with a GMT of 1:36.3. MA-IgA detection by this method was more sensitive than EA-IgA detection by IE. In contrast, patients with tumors other than NPC were negative for MA-IgA antibody. 9.1% of VCA-IgA positive persons were MA-IgA positive with a GMT of less than 1:5. No MA-IgA positive was found in VCA-IgA negatives. The results indicated that this method was relatively specific. In the treatment group, the positive rate and GMT of MA-IgA antibody declined with increase in survival time and the decline was faster than VCA-IgA. When recurrence or distant metastasis developed, similar to VCA-IgA and EA-IgA antibodies, the positive rate and GMT of MA-IgA antibody increased to its pretreatment level. Therefore, MA-IgA detection might be valuable in the early diagnosis and monitor of NPC.展开更多
Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical mo...Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical models were used to investigatestress and strain states in the GTBCs and traditional two-layered TBCs as they cooledto 750℃ from a stress-free state at 850℃.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
基金the funding support from Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and combined effects of different chemical compositions of deep groundwaters(chemical factor)at potential repository sites in Canada(the Trenton and Guelph regions in Ontario),heat generated in DGRs(thermal factor),dry densities and mass ratios of bentonite and sand mixtures(physical factors)on the swelling behavior and ability of bentonite-based materials.In this study,swelling tests are conducted on B/S mixtures with different B/S mix ratios(20/80 to 70/30),compacted at different dry densities(ρd=1.6-2 g/cm^(3)),saturated with different types of water(distilled water and simulated deep groundwater of Trenton and Guelph)and exposed to different temperatures(20℃-80℃).Moreover,scanning electron microscopy(SEM)analyses,mercury intrusion porosimetry(MIP)tests and X-ray diffractometry(XRD)analyses are carried out to evaluate the morphological,microstructural and mineralogical characteristics of the B/S mixtures.The test results indicate that the swelling potential of the B/S mixtures is significantly affected by these physical and chemical factors as well as the combined effects of the chemical and thermal factors.A significant decrease in the swelling capacity is observed when the B/S materials are exposed to the aforementioned groundwaters.A large decrease in the swelling capacity is observed for higher bentonite content in the mixtures.Moreover,higher temperatures intensify the chemically-induced reduction of the swelling capacity of the B/S barrier materials.This decrease in the swelling capacity is caused by the chemical and/or microstructural changes of the materials.The results from this research will help engineers to design and build EBSs for DGRs with similar groundwater and thermal conditions.
基金funded by the Oliver Fund of Tulane University,the Louisiana Board of Regents (LEQSF[2009-11]-RD-A-18)the NIH (NS065374)the NSF (CBET-1055990)
文摘The last decade has seen a steady proliferation in the use of tissue-engineered cell culture systems(Deforest and Anseth,2012),and these have been put to good use for studying neural axon growth and guidance(Li and Hoffman-Kim,2008;Roy et al.,2013).These systems have been designed to more closely mimic the natural microenvironment of the developing or repairing nervous system and to enable spatiotemporal control over certain aspects of the microenvironment.
基金the financial support from the National Natural Science Foundation of China(Nos.51572061,51621091,and 51321061)the Heilongjiang Touyan Team Program。
文摘The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.
文摘The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.
基金National Natural Science Foundation of China (50571005)
文摘Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones.
基金Supported by grants from the Innovation of Science and Technology Talents in Harbin(No.2017RAXQJ045)the Fundamental Research Funds for the Central Universities
文摘Objective To verify the neurotypicality of AAV-PHP.eB after tail vein injection in adult mice and its efficiency in crossing the blood-brain barrier(BBB).Methods The rAAV-SYN-GFP plasmid was constructed, and adult C57 BL mice were injected with AAV PHP.eB: SYN-GFP in the tail vein(300 nL, virus titer 3 × 10~9 vg) and in the prefrontal lobe(50 L, virus tite5 × 10^(11) vg). The green fluorescent protein(GFP) signal in the brain was observed at two weeks, while the GFP signal in the peripheral organs was observed at four weeks. Results Two weeks after tail vein injection, GFP expression was observed throughout the brain especially in the cortex, hippocampus, and geniculate nucleus. No GFP signal was observed or detected by western blotting in the peripheral organs after four weeks. GFP signal was observed mainly at the loca site after prefrontal lobe injection.Conclusion AAV-PHP.eB: SYN-GFP can effectively cross the BBB in adult mice. Using a neuron-specific promoter allows exogenous gene expression in neurons; therefore, AAV-PHP.eB can be used as an effective carrier for studying diseases in the central nervous system(CNS).
文摘With gene engineering EB virus membrane antigen as the diagnostic antigen, indirect immunofluo-rescence (IF) assay was used to detect IgA antibody against EB virus membrane antigen (MA-IgA) in sera from 202 nasopharyngeal carcinoma (NPC) patients and 315 controls (normal and patients with other tumors). MA-IgA antibody was positive in 96.8% of the pretreatment NPC patients with a GMT of 1:36.3. MA-IgA detection by this method was more sensitive than EA-IgA detection by IE. In contrast, patients with tumors other than NPC were negative for MA-IgA antibody. 9.1% of VCA-IgA positive persons were MA-IgA positive with a GMT of less than 1:5. No MA-IgA positive was found in VCA-IgA negatives. The results indicated that this method was relatively specific. In the treatment group, the positive rate and GMT of MA-IgA antibody declined with increase in survival time and the decline was faster than VCA-IgA. When recurrence or distant metastasis developed, similar to VCA-IgA and EA-IgA antibodies, the positive rate and GMT of MA-IgA antibody increased to its pretreatment level. Therefore, MA-IgA detection might be valuable in the early diagnosis and monitor of NPC.
基金sponsored by the National Natural Science Foundation of China(NSFC)Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP).
文摘Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical models were used to investigatestress and strain states in the GTBCs and traditional two-layered TBCs as they cooledto 750℃ from a stress-free state at 850℃.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.