Collagen materials were crosslinked by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of chondroitin sulfate (CS), one of glycosaminoglycans (GAGS). PVA and chitosan were also blended with colla...Collagen materials were crosslinked by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of chondroitin sulfate (CS), one of glycosaminoglycans (GAGS). PVA and chitosan were also blended with collagen. The physical and chemical properties of the matrices were characterized by SEM, DSC, and ESCA. L929 cells were implanted on the matrices to show the cytotoxic and the biological characters of the materials. The results indicate that EDC is an effective and non-cytotoxic cross-link reagent, which can replace the common dialdehyde reagent. The attachment of CS can improve the stability of collagen and accelerate cell growth. The addition of PVA can prepare porous matrices with smaller bore size. There are reactions between the chitosan and collagen, and the composite has good biological character. The presence of chitosan can also increase the amount of incorporated CS.展开更多
The nano-sized organic carbon (NOC) particles emitted from a small gasoline engine were characterized using various ex situ optical techniques to assess their hazardous impact. The exhaust gas was sampled iso-kineti...The nano-sized organic carbon (NOC) particles emitted from a small gasoline engine were characterized using various ex situ optical techniques to assess their hazardous impact. The exhaust gas was sampled iso-kinetically by a quartz probe and passed through de-ionized water to gather the hydrophilic car- bonaceous particulates as hydrosol. The hydrodynamic diameter of the particles ranged between 1.7 and 3.6 nm at no load, with a mean diameter of 2.4 nm. The particle size in the engine exhaust was found to increase at higher loads, which is attributed to coagulation of the particles. The chemical structure of the particles was analyzed using UV-vis and infra-red spectroscopy. Both the band gap energy and oscillator strength data evaluated from the UV-vis absorbance showed that the NOC particles contained polyaromatic hydrocarbon structures with three to five aromatic rings. Infra-red spectroscopy analysis further confirmed the presence of aliphatic and carbonyl functionalities in the aromatic structures of the particles. The fine size of the particles, their high number concentration for the type of the engine under study and their structural features, make the particles extremely hazardous for environment and health.展开更多
基金This work is supported by the National Natural Science Foundation of China for Prominent Younth(No.59625306)National Emphasis Basis Subject(973.Programn)G1999054309-4.
文摘Collagen materials were crosslinked by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of chondroitin sulfate (CS), one of glycosaminoglycans (GAGS). PVA and chitosan were also blended with collagen. The physical and chemical properties of the matrices were characterized by SEM, DSC, and ESCA. L929 cells were implanted on the matrices to show the cytotoxic and the biological characters of the materials. The results indicate that EDC is an effective and non-cytotoxic cross-link reagent, which can replace the common dialdehyde reagent. The attachment of CS can improve the stability of collagen and accelerate cell growth. The addition of PVA can prepare porous matrices with smaller bore size. There are reactions between the chitosan and collagen, and the composite has good biological character. The presence of chitosan can also increase the amount of incorporated CS.
基金the support from Council of Scientific and Industrial Research(CSIR),Govt.of India(Grant No.9/96(0622)2K10-EMR-I)for conducting this research
文摘The nano-sized organic carbon (NOC) particles emitted from a small gasoline engine were characterized using various ex situ optical techniques to assess their hazardous impact. The exhaust gas was sampled iso-kinetically by a quartz probe and passed through de-ionized water to gather the hydrophilic car- bonaceous particulates as hydrosol. The hydrodynamic diameter of the particles ranged between 1.7 and 3.6 nm at no load, with a mean diameter of 2.4 nm. The particle size in the engine exhaust was found to increase at higher loads, which is attributed to coagulation of the particles. The chemical structure of the particles was analyzed using UV-vis and infra-red spectroscopy. Both the band gap energy and oscillator strength data evaluated from the UV-vis absorbance showed that the NOC particles contained polyaromatic hydrocarbon structures with three to five aromatic rings. Infra-red spectroscopy analysis further confirmed the presence of aliphatic and carbonyl functionalities in the aromatic structures of the particles. The fine size of the particles, their high number concentration for the type of the engine under study and their structural features, make the particles extremely hazardous for environment and health.