期刊文献+
共找到2,154篇文章
< 1 2 108 >
每页显示 20 50 100
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas 被引量:1
1
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 rock mass classification Kinematic analysis slope stability Himalayan road Static and dynamic conditions
下载PDF
Rock mass quality classification based on deep learning:A feasibility study for stacked autoencoders 被引量:2
2
作者 Danjie Sheng Jin Yu +3 位作者 Fei Tan Defu Tong Tianjun Yan Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1749-1758,共10页
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep... Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation. 展开更多
关键词 rock mass quality classification Deep learning Stacked autoencoder(SAE) Back propagation algorithm
下载PDF
Classification and rating of disintegrated dolomite strata for slope stability analysis
3
作者 Wenlian Liu Xinyue Gong +3 位作者 Jiaxing Dong Hanhua Xu Peixuan Dai Shengwei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2552-2562,共11页
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin... Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes. 展开更多
关键词 Disintegrated dolomite slope Basic quality(BQ) slope stability probability classification (SSPC) rock mass quality classification Limit equilibrium method(LEM)
下载PDF
Applying rock mass classifications to carbonate rocks for engineering purposes with a new approach using the rock engineering system 被引量:1
4
作者 Gioacchino Francesco Andriani Mario Parise 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第2期364-369,共6页
Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not represe... Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not representative of the real stress-strain behavior.In this study,we propose a new classification of carbonate rock masses for engineering purposes,by adapting the rock engineering system(RES) method by Hudson for fractured and karstified rock masses,in order to highlight the problems of implementation of geomechanical models to carbonate rocks.This new approach allows a less rigid classification for carbonate rock masses,taking into account the local properties of the outcrops,the site conditions and the type of engineering work as well. 展开更多
关键词 rock mass classification CARBONATES KARST rock engineering system(RES)
下载PDF
Kinematic Analysis and Rock Mass Classifications for Rock Slope Failure at USAID Highways
5
作者 Ibnu Rusydy Nafisah Al-Huda +1 位作者 M.Fahmi Naufal Effendi 《Structural Durability & Health Monitoring》 EI 2019年第4期379-398,共20页
Rock slope kinematic analysis and rock mass classifications has been conducted at the 17^(th) km to 26^(th) km of USAID(United States Agency for International Development)highway in Indonesia.This research aimed to ex... Rock slope kinematic analysis and rock mass classifications has been conducted at the 17^(th) km to 26^(th) km of USAID(United States Agency for International Development)highway in Indonesia.This research aimed to examine the type of rock slope failures and the quality of rock mass as well.The scan-line method was performed in six slopes by using a geological compass to determine rock mass structure on the rock slope,and the condition of joints such as persistence,aperture,roughness,infilling material,weathering and groundwater conditions.Slope kinematic analysis was performed employing a stereographic projection.The rock slope quality and stability were investigated based on RMR(rock mass rating)and SMR(slope mass rating)parameters.The rock slope kinematic analysis revealed that planar failure was likely to occur in Slope 1,3,and 4,the wedge failure in Slope 1 and 6,and toppling failure in Slope 2,5,and 6.The RMR rating is ranging from 57 to 64 and can be categorized as Fair to Good rock.The SMR rating revealed that the failure probability of Slope 3 was 90%,while it was from 40%to 60%for others.Despite the uniform RMR for all slopes,the SMR was significantly different.The detailed quantitative consideration of orientation of joint sets and geometry of the slope contributed to such differences in outcomes. 展开更多
关键词 engineering geology kinematic analysis rock mass classifications rock slope stability ACEH Indonesia
下载PDF
A-BQ,a classification system for anisotropic rock mass based on China National Standard 被引量:8
6
作者 GUO Song-feng QI Sheng-wen SAROGLOU Charalampos 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3090-3102,共13页
The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,... The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state. 展开更多
关键词 ANISOTROPY rock mass basic quality classification TUNNEL slope
下载PDF
Application of rock mass classification systems to rock slope stability assessment:A case study 被引量:6
7
作者 Hassan Basahel Hani Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期993-1009,共17页
The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to ma... The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions. 展开更多
关键词 rock mass classification Graphical slope mass rating Continuous slope mass rating rock slope stability
下载PDF
A generic method for rock mass classification 被引量:3
8
作者 Vitthal M.Khatik Arup Kr.Nandi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期102-116,共15页
Rock mass classification(RMC) is of critical importance in support design and applications to mining,tunneling and other underground excavations. Although a number of techniques are available, there exists an uncertai... Rock mass classification(RMC) is of critical importance in support design and applications to mining,tunneling and other underground excavations. Although a number of techniques are available, there exists an uncertainty in application to complex underground works. In the present work, a generic rock mass rating(GRMR) system is developed. The proposed GRMR system refers to as most commonly used techniques, and two rock load equations are suggested in terms of GRMR, which are based on the fact that whether all the rock parameters considered by the system have an influence or only few of them are influencing. The GRMR method has been validated with the data obtained from three underground coal mines in India. Then, a semi-empirical model is developed for the GRMR method using artificial neural network(ANN), and it is validated by a comparative analysis of ANN model results with that by analytical GRMR method. 展开更多
关键词 rock mass classification(RMC) Generic system rock load Mathematical model Artificial neural network(ANN)
下载PDF
Deep learning-based key-block classification framework for discontinuous rock slopes 被引量:4
9
作者 Honghu Zhu Mohammad Azarafza Haluk Akgün 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1131-1139,共9页
The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper pres... The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian naïve Bayes(GNB), multilayer perceptron(MLP), Bernoulli naïve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing. 展开更多
关键词 Block theory Discontinuous rock slope Deep learning Convolutional neural network Image-based classification
下载PDF
A novel approach to structural anisotropy classification for jointed rock masses using theoretical rock quality designation formulation adjusted to joint spacing 被引量:2
10
作者 Harun Sonmez Murat Ercanoglu Gulseren Dagdelenler 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期329-345,共17页
Rock quality designation(RQD)has been considered as a one-dimensional jointing degree property since it should be determined by measuring the core lengths obtained from drilling.Anisotropy index of jointing degree(AI_... Rock quality designation(RQD)has been considered as a one-dimensional jointing degree property since it should be determined by measuring the core lengths obtained from drilling.Anisotropy index of jointing degree(AI_(jd))was formulated by Zheng et al.(2018)by considering maximum and minimum values of RQD for a jointed rock medium in three-dimensional space.In accordance with spacing terminology by ISRM(1981),defining the jointing degree for the rock masses composed of extremely closely spaced joints as well as for the rock masses including widely to extremely widely spaced joints is practically impossible because of the use of 10 cm as a threshold value in the conventional form of RQD.To overcome this limitation,theoretical RQD(TRQD_(t))introduced by Priest and Hudson(1976)can be taken into consideration only when the statistical distribution of discontinuity spacing has a negative exponential distribution.Anisotropy index of the jointing degree was improved using TRQD_(t) which was adjusted to wider joint spacing by considering Priest(1993)’s recommendation on the use of variable threshold value(t)in TRQD_(t) formulation.After applications of the improved anisotropy index of a jointing degree(AI'_(jd))to hypothetical jointed rock mass cases,the effect of persistency of joints on structural anisotropy of rock mass was introduced to the improved AI'_(jd) formulation by considering the ratings of persistency of joints as proposed by Bieniawski(1989)’s rock mass rating(RMR)classification.Two real cases were assessed in the stratified marl and the columnar basalt using the weighted anisotropy index of jointing degree(W_AI'_(jd)).A structural anisotropy classification was developed using the RQD classification proposed by Deere(1963).The proposed methodology is capable of defining the structural anisotropy of a rock mass including joint pattern from extremely closely to extremely widely spaced joints. 展开更多
关键词 Anisotropy index of jointing degree Anisotropy of rock mass rock mass classification Jointing degree Theoretical rock quality designation
下载PDF
GREY CLASSIFICATION FOR EVALUATING THE STABILITY OF DANGEROUS ROCK-BLOCK MASSES 被引量:7
11
作者 谢全敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第1期73-77,共5页
This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- bl... This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- block masses of Qingjiang water conservancyproject, and better results are abtained. The method which isadvanced in the article is very single and practical, and it can meetall kinds of project's demands. 展开更多
关键词 the stability of danagerous rock-block masses grey classification forevaluation Qingjiang water conservancy project
下载PDF
A Geological Classification of Rock Mass Quality and Blast Ability for Widely Spaced Formations
12
作者 Maria Chatziangelou Basile Christaras 《Journal of Geological Resource and Engineering》 2016年第4期160-174,共15页
Success in the excavation of geological formations is commonly known as being very important in asserting stability. Furthermore, when the subjected geological formation is rocky and the use of explosives is required,... Success in the excavation of geological formations is commonly known as being very important in asserting stability. Furthermore, when the subjected geological formation is rocky and the use of explosives is required, the demands of successful blasting are multiplied. The present paper proposes a classification system, named: BQS (blast ability quality system), for rock masses with widely spaced discontinuities (spacing longer than l m). It is obvious that rock quality is one of the main characteristics which define the blast ability of a rock. The BQS can be an easy and widely-used tool as it is a quick evaluator for blast ability and rock mass quality at one time. Taking into consideration the research calculations and the parameters of BQS, what has been at question in this paper is the effect of blast ability in a geological formation with widely spaced discontinuities. 展开更多
关键词 Geological classification blast ability rock mass quality methodology.
下载PDF
Determination of rock mass integrity coefficient using a non-invasive geophysical approach 被引量:2
13
作者 Muhammad Hasan Yanjun Shang +2 位作者 Xuetao Yi Peng Shao Meng He 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1426-1440,共15页
Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the ... Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the most efficient parameters,which is conventionally determined from boreholes.Such approaches,however,are time-consuming and expensive,offer low data coverage of point measurements,require heavy equipment,and are hardly conducted in steep topographic sites.Hence,borehole approaches cannot assess the subsurface thoroughly for rock mass quality evaluation.Alternatively,use of geophysical methods is non-invasive,rapid and economical.The proposed geophysical approach makes useful empirical correlation between geophysical and geotechnical parameters.We evaluated the rock mass quality via integration between KV measured from the limited boreholes and inverted resistivity obtained from electrical resistivity tomography(ERT).The borehole-ERT correlation provided KV along various geophysical profiles for more detailed 2D/3D(two-/three-dimensional)mapping of rock mass quality.The subsurface was thoroughly evaluated for rock masses with different engineering qualities,including highly weathered rock,semi-weathered rock,and fresh rock.Furthermore,ERT was integrated with induced polarization(IP)to resolve the uncertainty caused by water/clay content.Our results show that the proposed method,compared with the conventional approaches,can reduce the ambiguities caused by inadequate data,and give more accurate insights into the subsurface for rock mass quality evaluation. 展开更多
关键词 Geotechnical engineering rock mass integrity coefficient rock mechanical parameters Geophysical parameters Electrical resistivity tomography(ERT) Induced polarization(IP)
下载PDF
Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity 被引量:9
14
作者 Mohammadreza Hemmati Nourani Mohsen Taheri Moghadder Mohsen Safari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第2期318-328,共11页
Engineering rock mass classification,based on empirical relations between rock mass parameters and engineering applications,is commonly used in rock engineering and forms the basis for designing rock structures.The ba... Engineering rock mass classification,based on empirical relations between rock mass parameters and engineering applications,is commonly used in rock engineering and forms the basis for designing rock structures.The basic data required may be obtained from visual observation and laboratory or field tests.However,owing to the discontinuous and variable nature of rock masses,it is difficult for rock engineers to directly obtain the specific design parameters needed.As an alternative,the use of geophysical methods in geomechanics such as seismography may largely address this problem.In this study,25 seismic profiles with the total length of 543 m have been scanned to determine the geomechanical properties of the rock mass in blocks Ⅰ,Ⅲ and Ⅳ-2 of the Choghart iron mine.Moreover,rock joint measurements and sampling for laboratory tests were conducted.The results show that the rock mass rating(RMR) and Q values have a close relation with P-wave velocity parameters,including P-wave velocity in field(V;).P-wave velocity in the laboratory(V;) and the ratio of V;V;(i.e.K;= V;/V;.However,Q value,totally,has greater correlation coefficient and less error than the RMR,In addition,rock mass parameters including rock quality designation(RQD),uniaxial compressive strength(UCS),joint roughness coefficient(JRC) and Schmidt number(RN) show close relationship with P-wave velocity.An equation based on these parameters was obtained to estimate the P-wave velocity in the rock mass with a correlation coefficient of 91%.The velocities in two orthogonal directions and the results of joint study show that the wave velocity anisotropy in rock mass may be used as an efficient tool to assess the strong and weak directions in rock mass. 展开更多
关键词 rock mass classification P-wave velocity Q system rock mass rating(RMR) Geophysical methods
下载PDF
Overhanging rock slope by design:An integrated approach using rock mass strength characterisation,large-scale numerical modelling and limit equilibrium methods 被引量:10
15
作者 Paul Schlotfeldt Davide Elmo Brad Panton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期72-90,共19页
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight... Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope. 展开更多
关键词 rock slopes Discrete fracture network(DFN) rock mass strength characterisation Numerical modelling Limit equilibrium(LE) methods
下载PDF
Advances in statistical mechanics of rock masses and its engineering applications 被引量:11
16
作者 Faquan Wu Jie Wu +3 位作者 Han Bao Bo Li Zhigang Shan Deheng Kong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期22-45,共24页
To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the pas... To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses. 展开更多
关键词 Statistical mechanics of rock masses(SMRM) Jointed rock mass Geometric probability model Failure probability Anisotropic constitutive model engineering parameters
下载PDF
Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning 被引量:21
17
作者 Shaokang Hou Yaoru Liu Qiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期123-143,共21页
Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are g... Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed. 展开更多
关键词 Tunnel boring machine(TBM)operation data rock mass classification Stacking ensemble learning Sample imbalance Synthetic minority oversampling technique(SMOTE)
下载PDF
Numerical method to determine mechanical parameters of engineering design in rock masses 被引量:1
18
作者 薛廷河 项贻强 郭发忠 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期884-889,共6页
This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of... This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium;and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. Theexperimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Δ and the uniaxial pressure-resistant strength σc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice. 展开更多
关键词 Continuous micro-element Orthogonally-jointed rock engineering in rock masses Mechanical parameters
下载PDF
Slope stability assessment of an open pit using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach 被引量:1
19
作者 Subash Bastola Ming Cai Branko Damjanac 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期927-942,共16页
Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most ex... Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most existing numerical modeling tools,discontinuities are often simplified into planar surfaces.Discrete fracture network modeling tools such as MoFrac allow the simulation of non-planar discontinuities which can be incorporated into lattice-spring-based geomechanical software such as Slope Model for slope stability assessment.In this study,the slope failure of the south wall at Cadia Hill open pit mine is simulated using the lattice-spring-based synthetic rock mass(LS-SRM)modeling approach.First,the slope model is calibrated using field displacement monitoring data,and then the influence of different discontinuity configurations on the stability of the slope is investigated.The modeling results show that the slope with non-planar discontinuities is comparatively more stable than the ones with planar discontinuities.In addition,the slope becomes increasingly unstable with the increases of discontinuity intensity and size.At greater pit depth with higher in situ stress,both the slope models with planar and non-planar discontinuities experience localized failures due to very high stress concentrations,and the slope model with planar discontinuities is more deformable and less stable than that with non-planar discontinuities. 展开更多
关键词 Lattice-spring-based synthetic rock mass (LS-SRM)modeling Non-planar discontinuities slope stability slope model Discrete fracture network(DFN)modeling
下载PDF
Assessment of Rock Mass Quality and Deformation Modulus by Empirical Methods along Kandiah River, KPK, Pakistan 被引量:1
20
作者 Mian Sohail Akram Kamran Mirza +1 位作者 Muhammad Zeeshan Muhammad Asad Jabbar 《Open Journal of Geology》 2018年第10期947-964,共18页
The pivotal aim of this study is to evaluate the rock mass characterization and deformation modulus. It is vital for rock mass classification to investigate important parameters of discontinuities. Therefore, Rock Mas... The pivotal aim of this study is to evaluate the rock mass characterization and deformation modulus. It is vital for rock mass classification to investigate important parameters of discontinuities. Therefore, Rock Mass Rating (RMR) and Tunneling quality index (Q) classification systems are applied to analyze 22 segments along proposed tunnel routes for hydropower in Kandiah valley, Khyber Pakhtunkhwa, Pakistan. RMR revealed the range of fair to good quality rocks, whereas Q yielded poor to fair quality rocks for investigated segments of the rock mass. Besides, Em values were acquired by empirical equations and computer-aided program RocLab, and both methods presented almost similar variation trend of their results. Hence, the correlations of Em with Q and RMR were carried out with higher values of the regression coefficient. This study has scientific significance to initially understand the rock mass conditions of Kandiah valley. 展开更多
关键词 rock mass classification RMR and Q Deformation MODULUS (Em) Empirical EQUATIONS RocLab TUNNEL
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部