Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ...Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.展开更多
Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was ...Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.展开更多
Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to...Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to be resolved during coal mining. An analysis of floor heave in the soft rock surrounding the roadway, and the factors influencing it, allowed the deformation mechanism in the west wing double track haulage roadway of the Tingnan Coal Mine to be deduced. Three types of floor heave are observed there: intumescent floor heave, extrusion and mobility floor heave, and compound floor heave. Control measures are proposed that have been adopted during a recent repair engineering project. Control of the floor heave in the west wing track haulage roadway was demonstrated. The reliability and rationality of a combined support technology including floor anchors, an inverted arch, and anchoring of both sides was verified by mine pressure data and the field observations. Waterproofing measures were also under-taken to assist in the control of floor heave.展开更多
基金partially supported by program for the New Century Excellent Talents in University (No. NCET-08-0833)the National Natural Science Foundation of China (No. 41040027)the Special Fund of Basic Research and Operating Expenses of China University of Mining and Technology, Beijing
文摘Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.
基金Supported by the National Natural Science Fundation of China (50674045)the National "973" Planning Project(2007CB209403)
文摘Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.
基金grateful to the Key Program of the National Natural Science Foundation of China (Nos. 51134005, 40972196, and 41172263) for financing this research
文摘Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to be resolved during coal mining. An analysis of floor heave in the soft rock surrounding the roadway, and the factors influencing it, allowed the deformation mechanism in the west wing double track haulage roadway of the Tingnan Coal Mine to be deduced. Three types of floor heave are observed there: intumescent floor heave, extrusion and mobility floor heave, and compound floor heave. Control measures are proposed that have been adopted during a recent repair engineering project. Control of the floor heave in the west wing track haulage roadway was demonstrated. The reliability and rationality of a combined support technology including floor anchors, an inverted arch, and anchoring of both sides was verified by mine pressure data and the field observations. Waterproofing measures were also under-taken to assist in the control of floor heave.