This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Car...This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.展开更多
Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not represe...Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not representative of the real stress-strain behavior.In this study,we propose a new classification of carbonate rock masses for engineering purposes,by adapting the rock engineering system(RES) method by Hudson for fractured and karstified rock masses,in order to highlight the problems of implementation of geomechanical models to carbonate rocks.This new approach allows a less rigid classification for carbonate rock masses,taking into account the local properties of the outcrops,the site conditions and the type of engineering work as well.展开更多
Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective paramete...Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective parameters on the penetration rate is divided into two classes: rock mass properties and specifications of the machine, The chemical components of intact rock have a direct effect in determining rock mechan- ical properties, Theses parameters usually have not been investigated in any research on the rock drill- ability, In this study, physical and mechanical properties of iron ore were studied based on the amount of magnetite percent, According to the results of the tests, the effective parameters on the pen- etration rate of the rotary drilling machines were divided into three classes: specifications of the machi- nes, rock mass properties and chemical component of intact rock, Then, the rock drillahility was studied using rock engineering systems, The results showed that feed, rotation, rock mass index and iron oxide percent have important effect on penetration rate, Then a quadratic equation with 0,896 determination coefficient has been obtained, Also, the results showed that chemical components can he described as new parameters in rotary drill penetration rate,展开更多
The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and...The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).展开更多
This research describes a quantitative,rapid,and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases.The proposed approach can aid decision makers ...This research describes a quantitative,rapid,and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases.The proposed approach can aid decision makers in land management and territorial planning,by first screening for areas with a higher debris flow susceptibility.Five environmental predisposing factors,namely,bedrock lithology,fracture network,quaternary deposits,slope inclination,and hydrographic network,were selected as independent parameters and their mutual interactions were described and quantified using the Rock Engineering System(RES)methodology.For each parameter,specific indexes were proposed,aiming to provide a final synthetic and representative index of debris flow susceptibility at the basin scale.The methodology was tested in four basins located in the Upper Susa Valley(NW Italian Alps)where debris flow events are the predominant natural hazard.The proposed matrix can represent a useful standardized tool,universally applicable,since it is independent of type and characteristic of the basin.展开更多
A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the conc...A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.展开更多
An algorithm for global optimization of a class of nonconvex MINLP problems is devel-oped and presented in this paper.By partitioning the variables,dual representation of the primal ofsubproblems and outer-approximati...An algorithm for global optimization of a class of nonconvex MINLP problems is devel-oped and presented in this paper.By partitioning the variables,dual representation of the primal ofsubproblems and outer-approximation strategy are used to develop a representative relaxed iterativeproblem.Then the original MINLP problem is replaced by a series of subproblems and relaxediterative problems.By exploiting the particular form of the nonconvex MINLP problem,the feasibleregion of this problem is explicitly included in the representative problem,thus the inconvenienceencountered with the GBD method can be avoided.The proposed method is illustrated andinterpreted geometrically with an example problem.展开更多
This paper proposes a new engineering disciplin─Engineering System Theory. It dis cusses rendered background, research objects and contents of the engineering system theory briefly. Finally, the met-discipline stand...This paper proposes a new engineering disciplin─Engineering System Theory. It dis cusses rendered background, research objects and contents of the engineering system theory briefly. Finally, the met-discipline standing of the engineering system theory in the whole knowledge system of engineering science and its development potential are pointed out.展开更多
Computer-integrated manufacturing (CIM) and revers e engineering (RE) have changed drastically the concept of product re-design, pla nning and manufacture of components. However, the main problems currently facing the...Computer-integrated manufacturing (CIM) and revers e engineering (RE) have changed drastically the concept of product re-design, pla nning and manufacture of components. However, the main problems currently facing the developers of reverse engineering system, is the time consuming digitis ation of 3D data and the conversion of large amounts of data into a concise and manageable format and linking it to a CAD/CAM system. Automated 3-D profile gen eration, measurements and inspection of manufactured component represents one of the important functions in reverse engineering and in the improvements in produ ct quality in rapid product developments. The paper presents a novel methodology for the development of a reverse enginee ring technique for use in the rapid product development in a CIM environment . The system developed provides integration, data capture and manipulation, dat a transfer between a CAD, CAM, Computer-aided inspection (CAI) and a 3-D profi le scanning system. An efficient scanning strategy has been developed for scann ing and surfaces data acquisition. The products were scanned using a laser scann ing system with a dedicated scan control card and the associated software packag es. A versatile rig was developed for the ease of data gathering of the profile scanning process. The surface data collected was then used to build a mathematic al surface model, which was then used to develop a virtual 3-D model of the pro duct. The resulting surface model provides the geometrical input to the subseque nt machining operation using either a CNC system or other manufacturing operatio n e.g. dies casting/mould casting etc. The prototypes developed were inspected u sing a state-of-the art CNC-CMM that was integrated to the CAD/CAM system. Si nce the scanning/digitised data captured by laser scanning probes requires no ma nual editing, significant time saving over most non-contact probe systems was a chieved. Since the creation of an accurate CAD model of a redesigned component o r a prototype constitute a major element of the total turnaround time; maximum r eturn can be achieved by increasing the efficiency of the redesigning process. T he paper also outlines with a case study the application of the developed system . The system developed offers the flexibility of using the concept of reverse en gineering of a variety of components with the complimentary facility of integrat ion between CAD/CAM Computer-aided Inspection (CAI) systems and a scanning syst em. The developed reverse engineering application in an integrated manufacturing system can increase the consistency, improve cost-efficiency, reduce produ ct turn around and skill levels required to redesign, reengineer and prototyping components and products.展开更多
Development and application of a prototype KBE system is presented, details of the development tools and platforms, system flow chart, hybrid knowledge representation, and integrated system framework are illustrated. ...Development and application of a prototype KBE system is presented, details of the development tools and platforms, system flow chart, hybrid knowledge representation, and integrated system framework are illustrated. All design tasks of a missile seeker are integrated into a single computer-aided environment with a clear guidance to design processes from the user interface.展开更多
Mesenchymal stem cells(MSCs)experience substantial viability issues in the stroke infarct region,limiting their therapeutic efficacy and clinical translation.High levels of deadly reactive oxygen radicals(ROS)and proi...Mesenchymal stem cells(MSCs)experience substantial viability issues in the stroke infarct region,limiting their therapeutic efficacy and clinical translation.High levels of deadly reactive oxygen radicals(ROS)and proinflammatory cytokines(PC)in the infarct milieu kill transplanted MSCs,whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs’viability.Based on the intrinsic hormesis effects in cellular biology,we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy.This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer.In this system,extracellular ROSscavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a microlivable niche at the level of a single MSC for transplantation.Meanwhile,the infarct’s inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing.The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days.This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.展开更多
Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer ...Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer bushings with the two types of end fittings in a 500 kV substation were damaged.Post-earthquake field investigations were conducted,and the failures of the two types of bushings were compared.Two elementary simulation models of the transformer-bushing systems were developed to simulate the engineering failures,and further compute their seismic responses for comparison.The results indicate that the hitch lugs of the connection flange are structurally harmful to seismic resistance.Fitting-M can decrease the bending stiffness of the bushing due to the flexible sealing rubber gasket.Since it provides a more flexible connection that dissipates energy,the peak accelerations and relative displacements at the top of the bushing are significantly lower than those of the bushing with fitting-C.Compared with fitting-C,fitting-M transfers the high-stress areas from the connection flange to the root of the porcelain,so the latter becomes the most vulnerable component.Fitting-M increases the failure risk of the low-strength porcelain,indicating the unsuitability of applying it in high-intensity fortification regions.展开更多
The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficultie...The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.展开更多
Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technologi...Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technological revolution and industrial transformation to higher education,cultivating top-notch innovative intellectuals with comprehensive engineering qualities,meeting the requirements of being able to solve complex engineering problems rather than just cognitive capabilities,forming two core courses through reconstructing and reshaping the core courses of the major.The core courses include Drive,Measurement,and Control I and Drive,Measurement,and Control II,which highlight the comprehensive framework of mechanical and electronic engineering professional knowledge,continuing the comprehensive practical course system based on the unity of knowledge and practice,following the trend of new engineering,highlighting the practicality of professional innovation,assisting engineering education reform,and promoting high-quality development of new engineering professionals cultivation.展开更多
Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between develo...Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.展开更多
The report of the Chinese 20th National Congress put forward“strengthening the construction and management of textbooks”for the first time,which indicates the importance of textbook construction and highlights the v...The report of the Chinese 20th National Congress put forward“strengthening the construction and management of textbooks”for the first time,which indicates the importance of textbook construction and highlights the vital position of textbooks in the overall development of the country.From the perspective of textbook quality,and based on the research and analysis of the policy requirements and current evaluation indicators of higher education textbooks,this paper establishes the textbook quality evaluation index system composed of basic indicators and evaluation indicators.This system is based on the principles of science,comprehensiveness,operability,and target-oriented approach.It provides a relatively scientific,objective,and fair reference system for the management and evaluation of textbooks.展开更多
With the advancement of the construction of emerging engineering education,the reform of practical teaching has become an important task of higher engineering education.This article takes the course“Linux Operating S...With the advancement of the construction of emerging engineering education,the reform of practical teaching has become an important task of higher engineering education.This article takes the course“Linux Operating System Fundamentals”as an example to explore practical teaching reform in the context of emerging engineering education.By analyzing the current situation and problems in course practical teaching,we proposed practical teaching reforms such as online experiments,practical content updates,project-based engineering practices,and diversified evaluation models,and designed corresponding implementation plans.Practice has proved that this reform can improve students’learning interest and engineering practical skills,and cultivate outstanding engineers with innovative spirit and practical skills.展开更多
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas...Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
基金supported by the National Water Pollution Control and Management Technology Major Projects(Grant No. 2009ZX07423-001)the National Natural Science Foundation of China (Grants No.51179069and 40971300)the Fundamental Research Funds for the Central Universities (Grants No.10QX43,09MG16,and 10QG23)
文摘This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.
基金supported by MIUR (Italian Ministry of Education,University and Research Grant 15034/ 2007) under Grant 2010 ex MURST 60%"Modelli geologico-tecnici, idrogeologici e geofisici per la tutela e la valorizzazione delle risorse naturali,ambientali e culturali"(coordinator G.F.Andriani) and Grant 2013 ex MURST 60%"Ricerche stratigrafico-sedimentologiche di base ed applicate per it riconoscimento,la gestione e la tutela delle georisorse e dei beni storico/culturali e geoambientali"(coordinator M.Tropeano)the project Interreg Ⅲ A-"WET SYS B" 200-2006(responsible G.F.Andriani),with the financial contribution by the European Community
文摘Classical rock mass classification systems are not applicable to carbonate rocks,especially when these are affected by karst processes.Their applications to such settings could therefore result in outcomes not representative of the real stress-strain behavior.In this study,we propose a new classification of carbonate rock masses for engineering purposes,by adapting the rock engineering system(RES) method by Hudson for fractured and karstified rock masses,in order to highlight the problems of implementation of geomechanical models to carbonate rocks.This new approach allows a less rigid classification for carbonate rock masses,taking into account the local properties of the outcrops,the site conditions and the type of engineering work as well.
文摘Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective parameters on the penetration rate is divided into two classes: rock mass properties and specifications of the machine, The chemical components of intact rock have a direct effect in determining rock mechan- ical properties, Theses parameters usually have not been investigated in any research on the rock drill- ability, In this study, physical and mechanical properties of iron ore were studied based on the amount of magnetite percent, According to the results of the tests, the effective parameters on the pen- etration rate of the rotary drilling machines were divided into three classes: specifications of the machi- nes, rock mass properties and chemical component of intact rock, Then, the rock drillahility was studied using rock engineering systems, The results showed that feed, rotation, rock mass index and iron oxide percent have important effect on penetration rate, Then a quadratic equation with 0,896 determination coefficient has been obtained, Also, the results showed that chemical components can he described as new parameters in rotary drill penetration rate,
基金funded by the National Natural Science Foundation of China(Grant Nos.51274110,51304108,U1361211)
文摘The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).
文摘This research describes a quantitative,rapid,and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases.The proposed approach can aid decision makers in land management and territorial planning,by first screening for areas with a higher debris flow susceptibility.Five environmental predisposing factors,namely,bedrock lithology,fracture network,quaternary deposits,slope inclination,and hydrographic network,were selected as independent parameters and their mutual interactions were described and quantified using the Rock Engineering System(RES)methodology.For each parameter,specific indexes were proposed,aiming to provide a final synthetic and representative index of debris flow susceptibility at the basin scale.The methodology was tested in four basins located in the Upper Susa Valley(NW Italian Alps)where debris flow events are the predominant natural hazard.The proposed matrix can represent a useful standardized tool,universally applicable,since it is independent of type and characteristic of the basin.
文摘A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.
基金Supported by the National Natural Science Foundation of China
文摘An algorithm for global optimization of a class of nonconvex MINLP problems is devel-oped and presented in this paper.By partitioning the variables,dual representation of the primal ofsubproblems and outer-approximation strategy are used to develop a representative relaxed iterativeproblem.Then the original MINLP problem is replaced by a series of subproblems and relaxediterative problems.By exploiting the particular form of the nonconvex MINLP problem,the feasibleregion of this problem is explicitly included in the representative problem,thus the inconvenienceencountered with the GBD method can be avoided.The proposed method is illustrated andinterpreted geometrically with an example problem.
文摘This paper proposes a new engineering disciplin─Engineering System Theory. It dis cusses rendered background, research objects and contents of the engineering system theory briefly. Finally, the met-discipline standing of the engineering system theory in the whole knowledge system of engineering science and its development potential are pointed out.
文摘Computer-integrated manufacturing (CIM) and revers e engineering (RE) have changed drastically the concept of product re-design, pla nning and manufacture of components. However, the main problems currently facing the developers of reverse engineering system, is the time consuming digitis ation of 3D data and the conversion of large amounts of data into a concise and manageable format and linking it to a CAD/CAM system. Automated 3-D profile gen eration, measurements and inspection of manufactured component represents one of the important functions in reverse engineering and in the improvements in produ ct quality in rapid product developments. The paper presents a novel methodology for the development of a reverse enginee ring technique for use in the rapid product development in a CIM environment . The system developed provides integration, data capture and manipulation, dat a transfer between a CAD, CAM, Computer-aided inspection (CAI) and a 3-D profi le scanning system. An efficient scanning strategy has been developed for scann ing and surfaces data acquisition. The products were scanned using a laser scann ing system with a dedicated scan control card and the associated software packag es. A versatile rig was developed for the ease of data gathering of the profile scanning process. The surface data collected was then used to build a mathematic al surface model, which was then used to develop a virtual 3-D model of the pro duct. The resulting surface model provides the geometrical input to the subseque nt machining operation using either a CNC system or other manufacturing operatio n e.g. dies casting/mould casting etc. The prototypes developed were inspected u sing a state-of-the art CNC-CMM that was integrated to the CAD/CAM system. Si nce the scanning/digitised data captured by laser scanning probes requires no ma nual editing, significant time saving over most non-contact probe systems was a chieved. Since the creation of an accurate CAD model of a redesigned component o r a prototype constitute a major element of the total turnaround time; maximum r eturn can be achieved by increasing the efficiency of the redesigning process. T he paper also outlines with a case study the application of the developed system . The system developed offers the flexibility of using the concept of reverse en gineering of a variety of components with the complimentary facility of integrat ion between CAD/CAM Computer-aided Inspection (CAI) systems and a scanning syst em. The developed reverse engineering application in an integrated manufacturing system can increase the consistency, improve cost-efficiency, reduce produ ct turn around and skill levels required to redesign, reengineer and prototyping components and products.
基金Supported by the National High-Tech. R&D Program (863 program) for CIMS(2003AA411350)
文摘Development and application of a prototype KBE system is presented, details of the development tools and platforms, system flow chart, hybrid knowledge representation, and integrated system framework are illustrated. All design tasks of a missile seeker are integrated into a single computer-aided environment with a clear guidance to design processes from the user interface.
基金supported by National Natural Science Foundation of China(Nos.92068110,81973272 and 92068111)Shanghai Science and Technology Committee(Nos.20JC1411800,and 23S41900100,China)+4 种基金Programs of Shanghai Academic/Technology Research Leader(Nos.21XD1400200 and 21XD1422200,China)Innovation Program of Shanghai Municipal Education Commission(2023ZKZD21,China)the fund of Research Grant for Health Science and Technology of Shanghai Municipal Commission of Health Committee(No.20214Y0268,China)Science and Technology Development Fund of Shanghai Pudong New Area(No.PKJ2020-Y49,China)the Project of Key Medical Specialty and Treatment Center of Pudong Hospital of Fudan University(No.Zdzk2020-15,China)。
文摘Mesenchymal stem cells(MSCs)experience substantial viability issues in the stroke infarct region,limiting their therapeutic efficacy and clinical translation.High levels of deadly reactive oxygen radicals(ROS)and proinflammatory cytokines(PC)in the infarct milieu kill transplanted MSCs,whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs’viability.Based on the intrinsic hormesis effects in cellular biology,we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy.This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer.In this system,extracellular ROSscavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a microlivable niche at the level of a single MSC for transplantation.Meanwhile,the infarct’s inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing.The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days.This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.
基金National Natural Science Foundation of China under Grant No.51878508。
文摘Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer bushings with the two types of end fittings in a 500 kV substation were damaged.Post-earthquake field investigations were conducted,and the failures of the two types of bushings were compared.Two elementary simulation models of the transformer-bushing systems were developed to simulate the engineering failures,and further compute their seismic responses for comparison.The results indicate that the hitch lugs of the connection flange are structurally harmful to seismic resistance.Fitting-M can decrease the bending stiffness of the bushing due to the flexible sealing rubber gasket.Since it provides a more flexible connection that dissipates energy,the peak accelerations and relative displacements at the top of the bushing are significantly lower than those of the bushing with fitting-C.Compared with fitting-C,fitting-M transfers the high-stress areas from the connection flange to the root of the porcelain,so the latter becomes the most vulnerable component.Fitting-M increases the failure risk of the low-strength porcelain,indicating the unsuitability of applying it in high-intensity fortification regions.
文摘The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.
文摘Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technological revolution and industrial transformation to higher education,cultivating top-notch innovative intellectuals with comprehensive engineering qualities,meeting the requirements of being able to solve complex engineering problems rather than just cognitive capabilities,forming two core courses through reconstructing and reshaping the core courses of the major.The core courses include Drive,Measurement,and Control I and Drive,Measurement,and Control II,which highlight the comprehensive framework of mechanical and electronic engineering professional knowledge,continuing the comprehensive practical course system based on the unity of knowledge and practice,following the trend of new engineering,highlighting the practicality of professional innovation,assisting engineering education reform,and promoting high-quality development of new engineering professionals cultivation.
文摘Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.
文摘The report of the Chinese 20th National Congress put forward“strengthening the construction and management of textbooks”for the first time,which indicates the importance of textbook construction and highlights the vital position of textbooks in the overall development of the country.From the perspective of textbook quality,and based on the research and analysis of the policy requirements and current evaluation indicators of higher education textbooks,this paper establishes the textbook quality evaluation index system composed of basic indicators and evaluation indicators.This system is based on the principles of science,comprehensiveness,operability,and target-oriented approach.It provides a relatively scientific,objective,and fair reference system for the management and evaluation of textbooks.
基金2023 China University of Geosciences(Beijing)Undergraduate Education Quality Improvement Plan Construction Project,including“Linux Operating System”Practical Teaching Reform(Project number:JG202215)“University Computer”Online Experiment Construction(Project number:JG202216)+1 种基金CUGB-Zhonggong Computer Science and Technology Off-Campus Practical Teaching Base(Project number:SSJJD202201)Ministry of Education Fund Project:Research and Development of Computer Vision Practical Courses Based on Deep Learning(Project number:2022BC003)。
文摘With the advancement of the construction of emerging engineering education,the reform of practical teaching has become an important task of higher engineering education.This article takes the course“Linux Operating System Fundamentals”as an example to explore practical teaching reform in the context of emerging engineering education.By analyzing the current situation and problems in course practical teaching,we proposed practical teaching reforms such as online experiments,practical content updates,project-based engineering practices,and diversified evaluation models,and designed corresponding implementation plans.Practice has proved that this reform can improve students’learning interest and engineering practical skills,and cultivate outstanding engineers with innovative spirit and practical skills.
基金supported by the National Natural Science Foundation of China(52003113,31900950,82102334,82002313,82072444)the National Key Research&Development Program of China(2018YFC2001502,2018YFB1105705)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010745,2020A1515110356,2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190808120405672)the Key Program of the National Natural Science Foundation of Zhejiang Province(LZ22C100001)the Natural Science Foundation of Shanghai(20ZR1469800)the Integration Innovation Fund of Shanghai Jiao Tong University(2021JCPT03),the Science and Technology Projects of Guangzhou City(202102020359)the Zigong Key Science and Technology Plan(2022ZCNKY07).SXC thanks the financial support under the Startup Grant of the University of Chinese Academy of Sciences(WIUCASQD2021026).HW thanks the Futian Healthcare Research Project(FTWS2022013)the financial support of China Postdoctoral Science Foundation(2021TQ0118).SL thanks the financial support of China Postdoctoral Science Foundation(2022M721490).
文摘Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.