The curriculum ideology and politics play an important role in cultivating students’correct worldview,outlook on life,and values.In recent years,universities and colleges have begun to pay attention to the cultivatio...The curriculum ideology and politics play an important role in cultivating students’correct worldview,outlook on life,and values.In recent years,universities and colleges have begun to pay attention to the cultivation of postgraduates’moral education and the construction of postgraduates’curriculum ideology and politics.This paper takes the course“Theory of Software Engineering”of Anqing Normal University as an example,discusses the paths of integrating postgraduate professional courses into the construction of curriculum ideology and politics,and puts forward the paths of feeding back from scientific research,connecting with practice and summarizing and condensing,which are aimed at improving postgraduates’comprehensive quality and innovation ability,and have positive significance for cultivating high-level applied scientific and technological talents who are both moral and talented.展开更多
In order to grasp the evolution of flight conflict amount accurately and to forecast the amount, chaos in flight conflicts is studied. Firstly, a fault tree of flight conflicts is established based on the man-machine-...In order to grasp the evolution of flight conflict amount accurately and to forecast the amount, chaos in flight conflicts is studied. Firstly, a fault tree of flight conflicts is established based on the man-machine-environ- ment system engineering theory. The chaotic characteristics of flight conflict are analyzed from the qualitative point of view. Secondly, an improved chaotic algorithm for the largest Lyapunov exponent is proposed based on the small-data method and the wavelet de-noising theory. Chaos in flight conflict time series is identified by the improved chaotic algorithm from the quantitative point of view. Finally, a case study by the chaos forecasting al- gorithm is performed and the results are evaluated by the gray error checking : Correlative value of posterior error is 0. 220 9〈0. 35, and micro-error probability is 0. 985 3〉0.95. Such results show the chaos forecasting algo- rithm is effective, thus it is feasible to analyze and forecast flight conflict by chaotic theory.展开更多
On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN...On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade IV and V. And the ratios of soil samples grade IV and V in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.展开更多
Due to its capability of solving decision-making problems involving multiple entities and objectives, as well as complex action sequences, game theory has been a basic mathematical tool of economists, politicians, and...Due to its capability of solving decision-making problems involving multiple entities and objectives, as well as complex action sequences, game theory has been a basic mathematical tool of economists, politicians, and sociologists for decades. It helps them understand how strategic interactions impact rational decisions of individual players in competitive and uncertain environment, if each player aims to get the best payoff. This situation is ubiquitous in engineering practices. This paper streamlines the foundations of engineering game theory, which uses concepts, theories and methodologies to guide the resolution of engineering design, operation, and control problems in a more canonical and systematic way. An overview of its application in smart grid technologies and power systems related topics is presented, and intriguing research directions are also envisioned.展开更多
As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear...As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear optimal classifter. However, realizing SVM requires resolving quadratic programming under constraints of inequality, which results in calculation difficulty while learning samples gets larger. Besides, standard SVM is incapable of tackling multi-classification. To overcome the bottleneck of populating SVM, with training algorithm presented, the problem of quadratic programming is converted into that of resolving a linear system of equations composed of a group of equation constraints by adopting the least square SVM(LS-SVM) and introducing a modifying variable which can change inequality constraints into equation constraints, which simplifies the calculation. With regard to multi-classification, an LS-SVM applicable in multi-dassiftcation is deduced. Finally, efficiency of the algorithm is checked by using universal Circle in square and twospirals to measure the performance of the classifier.展开更多
A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segme...A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.展开更多
The interconnection between initially independent energy infrastructures offers additional system flexibility and efficiency.The integration at distribution level simplifies the implementation of the integrated energy...The interconnection between initially independent energy infrastructures offers additional system flexibility and efficiency.The integration at distribution level simplifies the implementation of the integrated energy system functionalities.This paper proposes concepts and design principles of a smart micro energy grid(MEG)for accommodating micro-grids,distributed poly-generation systems,energy storage facilities,and associated energy distribution infrastructures.The energy management system is responsible for the smart operation of the MEG while supporting multiple criteria,such as safety,economy,and environmental protection.To realize the vision of the smart MEG,an engineering game theory based energy management system with self-approaching-optimum capability is investigated.Based on the proposed concepts,design principles,and energy management system,this paper presents a prototype of China’s first conceptual solar-based smart MEG,established in Qinghai University.展开更多
In this study the structural and electronic properties of III-nitride monolayers XN(X=B, Al, Ga and In) under different percentages of homogeneous and shear strain are investigated using the full potential linearized ...In this study the structural and electronic properties of III-nitride monolayers XN(X=B, Al, Ga and In) under different percentages of homogeneous and shear strain are investigated using the full potential linearized augmented plane wave within the density functional theory. Geometry optimizations indicate that GaN and InN monolayers get buckled under compressive strain.Our calculations show that the free-strains of these four monolayers have an indirect band gap. By applying compressive biaxial strain, a transition from indirect to direct band gap occurs for GaN and InN, while the character of band gap for BN and AlN is not changed. Under tensile strain, only BN monolayer behaves as direct band gap semiconductor. In addition, when the shear strain is applied, only InN undergoes an indirect to direct band gap transition. Furthermore, the variations of band gap versus strain for III-nitride monolayers have been calculated. When a homogeneous uniform strain, in the range of [.10%, +10%], is applied to the monolayers, the band gap can be tuned for from 3.92 eV to 4.58 eV for BN, from 1.67 eV to 3.46 eV for AlN, from0.24 eV to 2.79 eV for GaN and from 0.60 eV to 0.90 eV for InN.展开更多
Contemporary system maturity assessment approaches have failed to provide robust quantitative system evaluations resulting in increased program costs and developmental risks.Standard assessment metrics,such as Technol...Contemporary system maturity assessment approaches have failed to provide robust quantitative system evaluations resulting in increased program costs and developmental risks.Standard assessment metrics,such as Technology Readiness Levels(TRL),do not sufficiently evaluate increasingly complex systems.The System Readiness Level(SRL)is a newly developed system development metric that is a mathematical function of TRL and Integration Readiness Level(IRL) values for the components and connections of a particular system.SRL acceptance has been hindered because of concerns over SRL mathematical operations that may lead to inaccurate system readiness assessments.These inaccurate system readiness assessments are called readiness reversals.A new SRL calculation method using incidence matrices is proposed to alleviate these mathematical concerns.The presence of SRL readiness reversal is modeled for four SRL calculation methods across several system configurations.Logistic regression analysis demonstrates that the proposed Incidence Matrix SRL(IMSRL)method has a decreased presence of readiness reversal than other approaches suggested in the literature.Viable SRL methods will foster greater SRL adoption by systems engineering professionals and will support system development risk reduction goals.展开更多
基金Project of Teaching Research of Anqing Normal University(Project numbers:2022aqnujyxm20,2023aqnujyxm05,2023aqnujyxm12,and 2023aqnujyxm34)Project of Provincial Quality Project Program for Nurturing People in the New Era(Graduate Education)of Anhui Province(Project number:2023jyjxggyjY199)Project of Quality Engineering of Anhui Province(Project number:2022xsxx119)。
文摘The curriculum ideology and politics play an important role in cultivating students’correct worldview,outlook on life,and values.In recent years,universities and colleges have begun to pay attention to the cultivation of postgraduates’moral education and the construction of postgraduates’curriculum ideology and politics.This paper takes the course“Theory of Software Engineering”of Anqing Normal University as an example,discusses the paths of integrating postgraduate professional courses into the construction of curriculum ideology and politics,and puts forward the paths of feeding back from scientific research,connecting with practice and summarizing and condensing,which are aimed at improving postgraduates’comprehensive quality and innovation ability,and have positive significance for cultivating high-level applied scientific and technological talents who are both moral and talented.
基金Supported by the Joint Funds of National Natural Science Foundation of China(61039001)~~
文摘In order to grasp the evolution of flight conflict amount accurately and to forecast the amount, chaos in flight conflicts is studied. Firstly, a fault tree of flight conflicts is established based on the man-machine-environ- ment system engineering theory. The chaotic characteristics of flight conflict are analyzed from the qualitative point of view. Secondly, an improved chaotic algorithm for the largest Lyapunov exponent is proposed based on the small-data method and the wavelet de-noising theory. Chaos in flight conflict time series is identified by the improved chaotic algorithm from the quantitative point of view. Finally, a case study by the chaos forecasting al- gorithm is performed and the results are evaluated by the gray error checking : Correlative value of posterior error is 0. 220 9〈0. 35, and micro-error probability is 0. 985 3〉0.95. Such results show the chaos forecasting algo- rithm is effective, thus it is feasible to analyze and forecast flight conflict by chaotic theory.
基金Under the auspices of National Natural Science Foundation of China (No. 40572170, 40871088 )
文摘On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade IV and V. And the ratios of soil samples grade IV and V in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.
基金This work was supported by National Natural Science Foundation of China (No. 51621065).
文摘Due to its capability of solving decision-making problems involving multiple entities and objectives, as well as complex action sequences, game theory has been a basic mathematical tool of economists, politicians, and sociologists for decades. It helps them understand how strategic interactions impact rational decisions of individual players in competitive and uncertain environment, if each player aims to get the best payoff. This situation is ubiquitous in engineering practices. This paper streamlines the foundations of engineering game theory, which uses concepts, theories and methodologies to guide the resolution of engineering design, operation, and control problems in a more canonical and systematic way. An overview of its application in smart grid technologies and power systems related topics is presented, and intriguing research directions are also envisioned.
文摘As a new type of learning machine developed on the basis of statistics learning theory, support vector machine (SVM) plays an important role in knowledge discovering and knowledge updating by constructing non-linear optimal classifter. However, realizing SVM requires resolving quadratic programming under constraints of inequality, which results in calculation difficulty while learning samples gets larger. Besides, standard SVM is incapable of tackling multi-classification. To overcome the bottleneck of populating SVM, with training algorithm presented, the problem of quadratic programming is converted into that of resolving a linear system of equations composed of a group of equation constraints by adopting the least square SVM(LS-SVM) and introducing a modifying variable which can change inequality constraints into equation constraints, which simplifies the calculation. With regard to multi-classification, an LS-SVM applicable in multi-dassiftcation is deduced. Finally, efficiency of the algorithm is checked by using universal Circle in square and twospirals to measure the performance of the classifier.
基金This project is supported by General Electric Company and National Advanced Technology Project of China(No.863-511-942-018).
文摘A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.
基金supported in part by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51621065)in part by Key Lab Program of Science and Technology Office of Qinghai Province(2017-ZJ-Y27)in part by the National Natural Science Foundation of China(51577163).
文摘The interconnection between initially independent energy infrastructures offers additional system flexibility and efficiency.The integration at distribution level simplifies the implementation of the integrated energy system functionalities.This paper proposes concepts and design principles of a smart micro energy grid(MEG)for accommodating micro-grids,distributed poly-generation systems,energy storage facilities,and associated energy distribution infrastructures.The energy management system is responsible for the smart operation of the MEG while supporting multiple criteria,such as safety,economy,and environmental protection.To realize the vision of the smart MEG,an engineering game theory based energy management system with self-approaching-optimum capability is investigated.Based on the proposed concepts,design principles,and energy management system,this paper presents a prototype of China’s first conceptual solar-based smart MEG,established in Qinghai University.
文摘In this study the structural and electronic properties of III-nitride monolayers XN(X=B, Al, Ga and In) under different percentages of homogeneous and shear strain are investigated using the full potential linearized augmented plane wave within the density functional theory. Geometry optimizations indicate that GaN and InN monolayers get buckled under compressive strain.Our calculations show that the free-strains of these four monolayers have an indirect band gap. By applying compressive biaxial strain, a transition from indirect to direct band gap occurs for GaN and InN, while the character of band gap for BN and AlN is not changed. Under tensile strain, only BN monolayer behaves as direct band gap semiconductor. In addition, when the shear strain is applied, only InN undergoes an indirect to direct band gap transition. Furthermore, the variations of band gap versus strain for III-nitride monolayers have been calculated. When a homogeneous uniform strain, in the range of [.10%, +10%], is applied to the monolayers, the band gap can be tuned for from 3.92 eV to 4.58 eV for BN, from 1.67 eV to 3.46 eV for AlN, from0.24 eV to 2.79 eV for GaN and from 0.60 eV to 0.90 eV for InN.
文摘Contemporary system maturity assessment approaches have failed to provide robust quantitative system evaluations resulting in increased program costs and developmental risks.Standard assessment metrics,such as Technology Readiness Levels(TRL),do not sufficiently evaluate increasingly complex systems.The System Readiness Level(SRL)is a newly developed system development metric that is a mathematical function of TRL and Integration Readiness Level(IRL) values for the components and connections of a particular system.SRL acceptance has been hindered because of concerns over SRL mathematical operations that may lead to inaccurate system readiness assessments.These inaccurate system readiness assessments are called readiness reversals.A new SRL calculation method using incidence matrices is proposed to alleviate these mathematical concerns.The presence of SRL readiness reversal is modeled for four SRL calculation methods across several system configurations.Logistic regression analysis demonstrates that the proposed Incidence Matrix SRL(IMSRL)method has a decreased presence of readiness reversal than other approaches suggested in the literature.Viable SRL methods will foster greater SRL adoption by systems engineering professionals and will support system development risk reduction goals.