In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process...In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming(MINLP) problem,which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network(HEN) and the refrigeration system(RS). The method presented in the paper can dramatically reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to illustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging.展开更多
Painting contractors have struggled with implementation and assessment of lead exposure controls leading to persistently elevated blood lead levels in this high-risk group of workers. The objective of this study was t...Painting contractors have struggled with implementation and assessment of lead exposure controls leading to persistently elevated blood lead levels in this high-risk group of workers. The objective of this study was to assess the intensity of lead exposures based on commonly used air velocities inside field containment structures during abrasive blasting and vacuuming. Exposures were assessed over 14 days from April to July 2021 at a tainter gate and bridge lead paint removal project. Personal air samples, skin wipes, air velocity readings, and blood lead samples were collected. The geometric mean (GM) lead exposure for abrasive blasters and vacuumers was ≥4 × the OSHA Lead Permissible Exposure Limit (PEL) of 50 μg/m<sup>3</sup>. There was high variability in the personal lead exposures (Geometric standard deviation (GSD) 4.0 - 5.0). The GM hand wipe exposures exceeded a Dermal PEL of 500 μg/wipe (abrasive blaster 564 μg/wipe and vacuumer 754 μg/wipe). Residual lead was measured on workers’ hands in 67% of the post hand washing samples. Air velocities measured inside of the field containments ranged from 107 feet per minute to 229 feet per minute. The effect of air velocity on the concentration of lead on workers’ hands after work (F = 0.58, p = 0.35) and airborne lead concentration was not significant (F = 0.36, p = 0.48). Six of the eight workers’ blood lead levels increased after exposure to lead. There was a non-statistically significant relationship between lead remaining on workers’ hands after handwashing and an increase in blood lead level. This is the first study that assessed both ventilation flow rates used in the industrial painting industry and measurements of airborne and dermal (hands) lead exposures. For the projects evaluated, the collected exposure data indicate that air velocities frequently used in the industrial painting industry to ventilate field containment structures did not tend to prevent an increase in worker blood lead and were ineffective for adequately controlling elevated concentrations of airborne lead and preventing contact with workers’ hands.展开更多
Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can r...Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can reduce both the loss of Voc and current hysteresis in PSCs.In this work,two-dimensional g-C_(3)N_(4) nanosheets were adopted to modify the compact TiO2 layers in planar PSCs,which can finely tune the work function(WF)and further improve the energy level alignment at the interface to enhance the Voc and diminish the hysteresis.Meanwhile,the quality of perovskite films and charge transfer of the devices were improved by g-C_(3)N_(4) nanosheets.Therefore,the PCE of the planar PSCs was champed to 19.55%without obvious hysteresis compared with the initial 15.81%,mainly owing to the remarkable improvement of VOC from 1.01 to 1.11 V.In addition,the stability of the devices was obviously improved.The results demonstrate an effective strategy of W_(F) engineering to enhance Voc and diminish hysteresis phenomenon for improving the performance of PSCs.展开更多
No one can pretend that nuclear engineering is simple.Far from it.But the next best thing is experience-lots of it-and no company can offermore experience or a more responsive service than BNFL Engineering Ltd.As the ...No one can pretend that nuclear engineering is simple.Far from it.But the next best thing is experience-lots of it-and no company can offermore experience or a more responsive service than BNFL Engineering Ltd.As the engineering arm of BNFL we are able to call on over 40 yearsof experience that provides our customers with valuable operational feedback,展开更多
HU Meijuan, 49, is a high-ranking engineer in charge of computer operations at the Qinshan Nuclear Power Station, the first nuclear power station built by China. Among more than 600 technicians, there are many women, ...HU Meijuan, 49, is a high-ranking engineer in charge of computer operations at the Qinshan Nuclear Power Station, the first nuclear power station built by China. Among more than 600 technicians, there are many women, but Hu is considered the most understanding of them. In 1987 the Qinshan Nuclear Power Station started operations in scenic Hangzhouwan. A large group of qualified personnel展开更多
In order to solve the aero-propulsion system acceleration optimal problem,the necessity of inlet control is discussed,and a fully new aero-propulsion system acceleration process control design including the inlet,engi...In order to solve the aero-propulsion system acceleration optimal problem,the necessity of inlet control is discussed,and a fully new aero-propulsion system acceleration process control design including the inlet,engine,and nozzle is proposed in this paper.In the proposed propulsion system control scheme,the inlet,engine,and nozzle are simultaneously adjusted through the FSQP method.In order to implement the control scheme design,an aero-propulsion system componentlevel model is built to simulate the inlet working performance and the matching problems between the inlet and engine.Meanwhile,a stabilizing inlet control scheme is designed to solve the inlet control problems.In optimal control of the aero-propulsion system acceleration process,the inlet is an emphasized control unit in the optimal acceleration control system.Two inlet control patterns are discussed in the simulation.The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively,acceleration performance could be obviously enhanced.Acceleration objectives could be obtained with a faster acceleration time by5%.展开更多
This article identifies and analyzes the effects of human pressures on the river systems,landscape,flow regime,and water quality in the Bucharest region,the largest urbanized area in Romania.The analyses focused on fo...This article identifies and analyzes the effects of human pressures on the river systems,landscape,flow regime,and water quality in the Bucharest region,the largest urbanized area in Romania.The analyses focused on four streams crossing the Bucharest region,namely the Dâmboviţa,Colentina,Argeş,and Sabar rivers.Our approach relied especially on three types of information:(1)spatial data;(2)hydrological data sets;and(3)water quality data.We made a diachronic analysis of the available maps and ran classic statistical analysis of the data sets,as well as trend analysis.At the same time,we compared the flows in natural(reconstituted)and modified(current)regimes.The results showed that the stream system and its associated landscapes have considerably changed due to several engineering works(reservoirs,dams,channelization works,diversion canals,water intakes,etc.).Under these circumstances,the flow regime suffered changes that differed among the rivers.Thus,the multiannual discharges of the Argeşand Dâmboviţa rivers did not exhibit significant changes,but only mitigated the monthly discharge variability.In the case of Sabar and Colentina,a significant increase of the annual and monthly discharges was identified,due to the water transferred from the neighboring rivers.Water quality worsened,especially on the lower courses of the Dâmboviţa and Argeşrivers,degrading the states and health of the aquatic ecosystems in the study region.展开更多
We present an approach of GaAs MESFET incorporating the gate engineering effect to improve immunity against the short channel effects in order to enhance the scaling capability and the device performance for microwave...We present an approach of GaAs MESFET incorporating the gate engineering effect to improve immunity against the short channel effects in order to enhance the scaling capability and the device performance for microwave frequency applications. In this context, a physics-based model for I–V characteristics and various microwave characteristics such as transconductance, cut-off frequency and maximum frequency of oscillation of submicron triple material gate(TM) GaAs MESFET are developed. The reduced short channel effects have also been discussed in combined designs i.e. TM, DM and SM in order to show the impact of our approach on the GaAs MESFETs-based device design. The proposed analytical models have been verified by their good agreement with 2D numerical simulations. The models developed in this paper will be useful for submicron and microwave analysis for circuit design.展开更多
基金the National Basic Research Program of China(2010CB720500)the National Natural Science Foundation of China(21176178)
文摘In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming(MINLP) problem,which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network(HEN) and the refrigeration system(RS). The method presented in the paper can dramatically reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to illustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging.
文摘Painting contractors have struggled with implementation and assessment of lead exposure controls leading to persistently elevated blood lead levels in this high-risk group of workers. The objective of this study was to assess the intensity of lead exposures based on commonly used air velocities inside field containment structures during abrasive blasting and vacuuming. Exposures were assessed over 14 days from April to July 2021 at a tainter gate and bridge lead paint removal project. Personal air samples, skin wipes, air velocity readings, and blood lead samples were collected. The geometric mean (GM) lead exposure for abrasive blasters and vacuumers was ≥4 × the OSHA Lead Permissible Exposure Limit (PEL) of 50 μg/m<sup>3</sup>. There was high variability in the personal lead exposures (Geometric standard deviation (GSD) 4.0 - 5.0). The GM hand wipe exposures exceeded a Dermal PEL of 500 μg/wipe (abrasive blaster 564 μg/wipe and vacuumer 754 μg/wipe). Residual lead was measured on workers’ hands in 67% of the post hand washing samples. Air velocities measured inside of the field containments ranged from 107 feet per minute to 229 feet per minute. The effect of air velocity on the concentration of lead on workers’ hands after work (F = 0.58, p = 0.35) and airborne lead concentration was not significant (F = 0.36, p = 0.48). Six of the eight workers’ blood lead levels increased after exposure to lead. There was a non-statistically significant relationship between lead remaining on workers’ hands after handwashing and an increase in blood lead level. This is the first study that assessed both ventilation flow rates used in the industrial painting industry and measurements of airborne and dermal (hands) lead exposures. For the projects evaluated, the collected exposure data indicate that air velocities frequently used in the industrial painting industry to ventilate field containment structures did not tend to prevent an increase in worker blood lead and were ineffective for adequately controlling elevated concentrations of airborne lead and preventing contact with workers’ hands.
基金This work was supported by the National Natural Science Foundation of China(Nos.11804166 and 51372119)the China Postdoctoral Science Foundation(No.2018M630587).
文摘Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can reduce both the loss of Voc and current hysteresis in PSCs.In this work,two-dimensional g-C_(3)N_(4) nanosheets were adopted to modify the compact TiO2 layers in planar PSCs,which can finely tune the work function(WF)and further improve the energy level alignment at the interface to enhance the Voc and diminish the hysteresis.Meanwhile,the quality of perovskite films and charge transfer of the devices were improved by g-C_(3)N_(4) nanosheets.Therefore,the PCE of the planar PSCs was champed to 19.55%without obvious hysteresis compared with the initial 15.81%,mainly owing to the remarkable improvement of VOC from 1.01 to 1.11 V.In addition,the stability of the devices was obviously improved.The results demonstrate an effective strategy of W_(F) engineering to enhance Voc and diminish hysteresis phenomenon for improving the performance of PSCs.
文摘No one can pretend that nuclear engineering is simple.Far from it.But the next best thing is experience-lots of it-and no company can offermore experience or a more responsive service than BNFL Engineering Ltd.As the engineering arm of BNFL we are able to call on over 40 yearsof experience that provides our customers with valuable operational feedback,
文摘HU Meijuan, 49, is a high-ranking engineer in charge of computer operations at the Qinshan Nuclear Power Station, the first nuclear power station built by China. Among more than 600 technicians, there are many women, but Hu is considered the most understanding of them. In 1987 the Qinshan Nuclear Power Station started operations in scenic Hangzhouwan. A large group of qualified personnel
基金co-supported by the Fundamental Research Funds for the Central Universities(No:NZ2016103)the National Natural Science Foundation of China(No: 51576096)
文摘In order to solve the aero-propulsion system acceleration optimal problem,the necessity of inlet control is discussed,and a fully new aero-propulsion system acceleration process control design including the inlet,engine,and nozzle is proposed in this paper.In the proposed propulsion system control scheme,the inlet,engine,and nozzle are simultaneously adjusted through the FSQP method.In order to implement the control scheme design,an aero-propulsion system componentlevel model is built to simulate the inlet working performance and the matching problems between the inlet and engine.Meanwhile,a stabilizing inlet control scheme is designed to solve the inlet control problems.In optimal control of the aero-propulsion system acceleration process,the inlet is an emphasized control unit in the optimal acceleration control system.Two inlet control patterns are discussed in the simulation.The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively,acceleration performance could be obviously enhanced.Acceleration objectives could be obtained with a faster acceleration time by5%.
文摘This article identifies and analyzes the effects of human pressures on the river systems,landscape,flow regime,and water quality in the Bucharest region,the largest urbanized area in Romania.The analyses focused on four streams crossing the Bucharest region,namely the Dâmboviţa,Colentina,Argeş,and Sabar rivers.Our approach relied especially on three types of information:(1)spatial data;(2)hydrological data sets;and(3)water quality data.We made a diachronic analysis of the available maps and ran classic statistical analysis of the data sets,as well as trend analysis.At the same time,we compared the flows in natural(reconstituted)and modified(current)regimes.The results showed that the stream system and its associated landscapes have considerably changed due to several engineering works(reservoirs,dams,channelization works,diversion canals,water intakes,etc.).Under these circumstances,the flow regime suffered changes that differed among the rivers.Thus,the multiannual discharges of the Argeşand Dâmboviţa rivers did not exhibit significant changes,but only mitigated the monthly discharge variability.In the case of Sabar and Colentina,a significant increase of the annual and monthly discharges was identified,due to the water transferred from the neighboring rivers.Water quality worsened,especially on the lower courses of the Dâmboviţa and Argeşrivers,degrading the states and health of the aquatic ecosystems in the study region.
文摘We present an approach of GaAs MESFET incorporating the gate engineering effect to improve immunity against the short channel effects in order to enhance the scaling capability and the device performance for microwave frequency applications. In this context, a physics-based model for I–V characteristics and various microwave characteristics such as transconductance, cut-off frequency and maximum frequency of oscillation of submicron triple material gate(TM) GaAs MESFET are developed. The reduced short channel effects have also been discussed in combined designs i.e. TM, DM and SM in order to show the impact of our approach on the GaAs MESFETs-based device design. The proposed analytical models have been verified by their good agreement with 2D numerical simulations. The models developed in this paper will be useful for submicron and microwave analysis for circuit design.