BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal gangli...BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles with ultrasound was significantly greater than the other groups, and no obvious damage was detected in the RGCs. CONCLUSION: Under irradiation of low-frequency ultrasound waves, ultrasound-mediated microbubble destruction was effective and resulted in safe transfection of the EGFP gene to the RGCs.展开更多
Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inne...Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.展开更多
As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of a...As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of ammonium sulfate precipitation, size exclusion chromatography, and anion exchange chromatography was devel- oped for the purification of eGFP. Based on the proposed procedure, recombinant eGFP with an electrophoretic pu- rity was achieved in combination with an overall yield of 66% and a purification factor of 17.9. The fluorescent spectrometry of purified eGFP and lysate from E. coli strain expressing eGFP exhibited the same wavelength of ex- citation and emission maxima, indicating that the purification procedure did not influence the construct and fluo- rescent characteristics of desired protein. The procedure mentioned was easy to scale up for the purification of large quantities of eGFP.展开更多
Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected wit...Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected with 1, 10, or 100 pM kisspeptin-10, a peptide derived from full-length kisspeptin, into the arcuate nucleus and medial preoptic area, and with the kJsspeptJn antagonist peptJde 234 into the lateral cerebral ventricle. The results of immunohistochemical staining revealed that pulsatile luteinizing hormone secretion was suppressed after injection of antagonist peptide 234 into the lateral cerebral ventricle, and a significant increase in luteinizing hormone level was observed after kisspeptin-10 injection into the arcuate nucleus and medial preoptic area. The results of an enzyme-linked immunosorbent assay showed that luteinizing hormone levels during the first hour of kisspeptin-10 infusion into the arcuate nucleus were significantly greater in the 100 pM kisspeptin-10 group than in the 10 pM kisspeptin-10 group. These findings indicate that kisspeptin directly promotes gonadotropin-releasing hormone secretion and luteinizing hormone release in gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. The arcuate nucleus is a key component of the kisspeptin-G protein-coupled receptor 54 signaling pathway underlying regulating luteinizing hormone pulse secretion.展开更多
AIM: To explore the effects of ultrasound exposure combined with microbubble contrast agent (SonoVue) on the permeability of the cellular membrane and on the expression of plasrnid DNA encoding enhanced green fluor...AIM: To explore the effects of ultrasound exposure combined with microbubble contrast agent (SonoVue) on the permeability of the cellular membrane and on the expression of plasrnid DNA encoding enhanced green fluorescent protein (pEGFP) transfer into human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs with fluorescein isothiocyanatedextran (FD500) and HUVECs with pEGFP were exposed to continuous wave (1.9 MHz, 80.0 mW/cm^2) for 5 min, with or without a SonoVue. The percentage of FD500 taken by the HUVECs and the transient expression rate of pEGFP in the HUVECs were examined by fluorescence microscopy and flow cytornetry, respectively. RESULTS: The percentage of FDS00-positive HUVECs in the group of ultrasound exposure combined with SonoVue was significantly higher than that of the group of ultrasound exposure alone (24.0%± 5.5% vs 66.6% ± 4.1%, P 〈 0.001). Compared with the group of ultrasound exposure alone, the transfection expression rate of pEGFP in HUVECs was markedly increased with the addition of SonoVue (16.1% ± 1.9% vs 1.5% ± 0.2%, P 〈 0.001). No statistical significant difference was observed in the HUVECs survival rates between the ultrasound group with and without the addition of SonoVue (94.1% ± 2.3% vs 91.1% ± 4.1% ). CONCLUSION: The cell membrane permeability of HUVECs and the transfection efficiency of pEGFP into HUVECs exposed to ultrasound are significantly increased after addition of an ultrasound contrast agent without obvious damage to the survival of HUVECs. This non- invasive gene transfer method may be a useful tool for clinical gene therapy of hepatic tumors.展开更多
The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to p...The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5% ± 2.2% v.s. 22.9% 4± 2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells.展开更多
Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA ...Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/ chicken beta-actin promoter/ beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.Results We generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the 'green' ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The 'green' embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence. Conclusions The hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.展开更多
目的探讨超声微泡破碎技术介导增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因在兔骨缺损处转染时,不同途径注射质粒微泡混悬液对转染效率及局部组织的影响。方法3月龄新西兰大白兔10只,制备右尺骨骨缺损模型,按照...目的探讨超声微泡破碎技术介导增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因在兔骨缺损处转染时,不同途径注射质粒微泡混悬液对转染效率及局部组织的影响。方法3月龄新西兰大白兔10只,制备右尺骨骨缺损模型,按照随机数字表法分为静脉组和断端间组(n=5)。静脉组和断端间组造模后第10天分别经耳缘静脉或骨缺损断端间向兔体内注射携带EGFP基因的质粒微泡混悬液(0.3 ml/kg)。在超声频率1 MHz,超声强度1.0 W/cm^(2),占空比20%条件下,对两组骨缺损部位超声辐照1 min,进行EGFP基因转染。在基因转染后1周时处死兔,于骨缺损处获取标本制作切片,荧光染色观察各组EGFP表达情况。采用病理图像分析软件分析计算平均光密度。HE染色观察断端间软组织病理特点。结果静脉组和断端间组均观察到绿色荧光蛋白表达。断端间组平均光密度高于静脉组,差异有统计学意义(0.0345±0.0028 vs 0.0004±0.0001,P<0.05)。表达绿色荧光蛋白的细胞主要为骨骼肌细胞,各组未见细胞坏死征象。结论超声微泡破碎技术介导EGFP基因在兔骨缺损处转染时,其效率受不同途径注射质粒微泡混悬液的影响,骨缺损断端间直接注射优于静脉注射。展开更多
[Objective] The research aimed to construct the fusion protein expression vector of α-galactosidase-EGFP (enhanced green fluorescent protein) in cucumber controlled by CaMV35S promoter.[Method] CaMV35S promoter seq...[Objective] The research aimed to construct the fusion protein expression vector of α-galactosidase-EGFP (enhanced green fluorescent protein) in cucumber controlled by CaMV35S promoter.[Method] CaMV35S promoter sequence and the coding region of EGFP were amplified by polymerase chain reactions (PCR) with vector pCambia 1303 as the template.Using reverse transcript PCR technology,with total RNAs of cucumber as template,the coding region of acid α-galactosidase Ⅰ in cucumber was amplified.The above three fragments were inserted into the multiple cloning sites of expression vector pCambia 1381c.The fusion expression vector of α-galactosidase-EGFP located at the C-terminal of the target genes was constructed.[Result] After enzyme digestion and sequencing,the fusion expression of α-galactosidase-EGFP in cucumber was constructed successfully.[Conclusion] The research laid the experimental basis for further study on the subcellular localization of α-galactosidase in cucumber.展开更多
基金the National Natural Science Foundation of China,No.30430230
文摘BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles with ultrasound was significantly greater than the other groups, and no obvious damage was detected in the RGCs. CONCLUSION: Under irradiation of low-frequency ultrasound waves, ultrasound-mediated microbubble destruction was effective and resulted in safe transfection of the EGFP gene to the RGCs.
基金National Natural Science Foundation of China (Grant Nos 30470074,30671615)Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-N-021).
文摘Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.
基金Supported by the National Natural Science Foundation of China (No. 20306024, No. 20476082), Tianjin Applied FundamentalResearch Project (No. 0436048-11) and the Program for Changjiang Scholars and Innovative Research Team in University from the Ministry of Education of China.
文摘As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of ammonium sulfate precipitation, size exclusion chromatography, and anion exchange chromatography was devel- oped for the purification of eGFP. Based on the proposed procedure, recombinant eGFP with an electrophoretic pu- rity was achieved in combination with an overall yield of 66% and a purification factor of 17.9. The fluorescent spectrometry of purified eGFP and lysate from E. coli strain expressing eGFP exhibited the same wavelength of ex- citation and emission maxima, indicating that the purification procedure did not influence the construct and fluo- rescent characteristics of desired protein. The procedure mentioned was easy to scale up for the purification of large quantities of eGFP.
文摘Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected with 1, 10, or 100 pM kisspeptin-10, a peptide derived from full-length kisspeptin, into the arcuate nucleus and medial preoptic area, and with the kJsspeptJn antagonist peptJde 234 into the lateral cerebral ventricle. The results of immunohistochemical staining revealed that pulsatile luteinizing hormone secretion was suppressed after injection of antagonist peptide 234 into the lateral cerebral ventricle, and a significant increase in luteinizing hormone level was observed after kisspeptin-10 injection into the arcuate nucleus and medial preoptic area. The results of an enzyme-linked immunosorbent assay showed that luteinizing hormone levels during the first hour of kisspeptin-10 infusion into the arcuate nucleus were significantly greater in the 100 pM kisspeptin-10 group than in the 10 pM kisspeptin-10 group. These findings indicate that kisspeptin directly promotes gonadotropin-releasing hormone secretion and luteinizing hormone release in gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. The arcuate nucleus is a key component of the kisspeptin-G protein-coupled receptor 54 signaling pathway underlying regulating luteinizing hormone pulse secretion.
基金Supported by grants from the Nationl Natural Scientific Foundation of China, No.30300082, 30470467, and Scientific Foundation Committee of Guangdong Province, China, No.04009360
文摘AIM: To explore the effects of ultrasound exposure combined with microbubble contrast agent (SonoVue) on the permeability of the cellular membrane and on the expression of plasrnid DNA encoding enhanced green fluorescent protein (pEGFP) transfer into human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs with fluorescein isothiocyanatedextran (FD500) and HUVECs with pEGFP were exposed to continuous wave (1.9 MHz, 80.0 mW/cm^2) for 5 min, with or without a SonoVue. The percentage of FD500 taken by the HUVECs and the transient expression rate of pEGFP in the HUVECs were examined by fluorescence microscopy and flow cytornetry, respectively. RESULTS: The percentage of FDS00-positive HUVECs in the group of ultrasound exposure combined with SonoVue was significantly higher than that of the group of ultrasound exposure alone (24.0%± 5.5% vs 66.6% ± 4.1%, P 〈 0.001). Compared with the group of ultrasound exposure alone, the transfection expression rate of pEGFP in HUVECs was markedly increased with the addition of SonoVue (16.1% ± 1.9% vs 1.5% ± 0.2%, P 〈 0.001). No statistical significant difference was observed in the HUVECs survival rates between the ultrasound group with and without the addition of SonoVue (94.1% ± 2.3% vs 91.1% ± 4.1% ). CONCLUSION: The cell membrane permeability of HUVECs and the transfection efficiency of pEGFP into HUVECs exposed to ultrasound are significantly increased after addition of an ultrasound contrast agent without obvious damage to the survival of HUVECs. This non- invasive gene transfer method may be a useful tool for clinical gene therapy of hepatic tumors.
基金supported by a grant from the BioGreen 21 program(Nos.PJ009080,PJ008067 and PJ007990022012)Rural Development Administration(RDA),Republic of Korea
文摘The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5% ± 2.2% v.s. 22.9% 4± 2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells.
文摘Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/ chicken beta-actin promoter/ beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.Results We generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the 'green' ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The 'green' embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence. Conclusions The hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.
文摘目的探讨超声微泡破碎技术介导增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因在兔骨缺损处转染时,不同途径注射质粒微泡混悬液对转染效率及局部组织的影响。方法3月龄新西兰大白兔10只,制备右尺骨骨缺损模型,按照随机数字表法分为静脉组和断端间组(n=5)。静脉组和断端间组造模后第10天分别经耳缘静脉或骨缺损断端间向兔体内注射携带EGFP基因的质粒微泡混悬液(0.3 ml/kg)。在超声频率1 MHz,超声强度1.0 W/cm^(2),占空比20%条件下,对两组骨缺损部位超声辐照1 min,进行EGFP基因转染。在基因转染后1周时处死兔,于骨缺损处获取标本制作切片,荧光染色观察各组EGFP表达情况。采用病理图像分析软件分析计算平均光密度。HE染色观察断端间软组织病理特点。结果静脉组和断端间组均观察到绿色荧光蛋白表达。断端间组平均光密度高于静脉组,差异有统计学意义(0.0345±0.0028 vs 0.0004±0.0001,P<0.05)。表达绿色荧光蛋白的细胞主要为骨骼肌细胞,各组未见细胞坏死征象。结论超声微泡破碎技术介导EGFP基因在兔骨缺损处转染时,其效率受不同途径注射质粒微泡混悬液的影响,骨缺损断端间直接注射优于静脉注射。
基金Supported by National Basic Research Program of China( 2009CB119000)National Natural Science Foundation(30871721)~~
文摘[Objective] The research aimed to construct the fusion protein expression vector of α-galactosidase-EGFP (enhanced green fluorescent protein) in cucumber controlled by CaMV35S promoter.[Method] CaMV35S promoter sequence and the coding region of EGFP were amplified by polymerase chain reactions (PCR) with vector pCambia 1303 as the template.Using reverse transcript PCR technology,with total RNAs of cucumber as template,the coding region of acid α-galactosidase Ⅰ in cucumber was amplified.The above three fragments were inserted into the multiple cloning sites of expression vector pCambia 1381c.The fusion expression vector of α-galactosidase-EGFP located at the C-terminal of the target genes was constructed.[Result] After enzyme digestion and sequencing,the fusion expression of α-galactosidase-EGFP in cucumber was constructed successfully.[Conclusion] The research laid the experimental basis for further study on the subcellular localization of α-galactosidase in cucumber.