Systematic investigation on enhancing removal of natural organic matter (NOM) using inorganic polymer flocculant (IPF), polyaluminum chloride(PACI) and polyacrylamide(PAM) was performed in a typical south-Chin...Systematic investigation on enhancing removal of natural organic matter (NOM) using inorganic polymer flocculant (IPF), polyaluminum chloride(PACI) and polyacrylamide(PAM) was performed in a typical south-China source water. Enhanced coagulation and applying polymer flocculant-aid were compared through jar tests and pilot tests. Raw water and settled water were characterized and fractionated by resin adsorption. The results show that DOC composes major part of TOC. The DOC distribution keeps relatively stable all around the year with typical high amounts of the hydrophilic matter around 50%. The distribution between HoB, HoA and HoN varies and undergoes fluctuation with the year round. During the summer season, the HoN becomes gradually the major part in hydrophobic parts. PACI with the species being tailor-made shows little pH effect during coagulation. The enhanced coagulation dosage for PACI could be 4.5 mg/L for the typical source water. The highest TOC removal achieved 31%. To be economically, 3 mg/L dose is the optimum dosage. Although hydrophilic fractions of NOM of both treatment strategies are removed about 30%, NOM causing UV254 absorbance were well removed(about 90%). Hydrophobic bases and acids fractions are much more removed under enhanced conditions. The hydrophilic fraction could be better removed using PAM, the polymer coagulant aid.展开更多
Presents the effect of enhanced coagulation with a composite chemical containing ferrate upon algae removal with results showing that enhanced coagulation is efficient for algae removal. A comparison made between enha...Presents the effect of enhanced coagulation with a composite chemical containing ferrate upon algae removal with results showing that enhanced coagulation is efficient for algae removal. A comparison made between enhanced coagulation with composite ferrate and conventional pre chlorination, indicates that algae removal efficiency of the former was higher than that of the latter. And the algae removal efficiency can be further improved by extending the time of enhanced coagulation with the composite chemical containing ferrate.展开更多
In order to evaluate the processing efficiency of coagulation sedimentation on wastewater from dairy farm and to provide reference for wastewater treat- ment, an experimental study was carried out to investigate effec...In order to evaluate the processing efficiency of coagulation sedimentation on wastewater from dairy farm and to provide reference for wastewater treat- ment, an experimental study was carried out to investigate effects of coagulant dosage, types, pH, dosage of coagulant aids PAM on removal rate of COD, turbidity and SS in wastewater from dairy farm. The results showed that PAC displayed higher effectiveness in treatment; the removal rates of COD, turbidity and SS were 61.4%, 86.6% and 94.5% respectively when pH was 11.0, PAC dosage was 150 mg/L, and PAM dosage was 4 mg/L. The results indicated that coagulation sedimentation could reduce organic content of wastewater effectively and alleviate the load of subsequent biochemical treatment.展开更多
For the wastewater containing high-concentration Hg,the feasibility of high-concentration Hg in wastewater treated by coagulation sedimentation,adsorption and the combined process was studied. Research results showed ...For the wastewater containing high-concentration Hg,the feasibility of high-concentration Hg in wastewater treated by coagulation sedimentation,adsorption and the combined process was studied. Research results showed that if using the single coagulation sedimentation process,when FeSO_4·7H_2O dosage was 1. 39 g / L,and NaOH dosage was 0. 40 g / L,it could meet discharge requirement,but the reagent cost was 13. 1yuan / t,which was high. Because that there was subsequent adsorption process,it was selected 0. 28 g / L of FeSO_4·7H_2O and 0. 36 g / L of NaOH,and the estimated reagent cost was 2. 62 yuan / t. In selection process of adsorption materials,powdered activated carbon,granular activated carbon and diatomite all could effectively adsorb Hg,and the technology was feasible. When using the combined process of coagulation sedimentation + adsorption to treat the wastewater containing high-concentration Hg( 800 μg / L),removal rate could reach 99%,and operation cost was 2. 71 yuan. It could meet the requirement of sewage discharged into sewer( 20 μg / L) at the technology,and was acceptable at the economy.Therefore,treatment of wastewater containing high-concentration Hg by the combined process was feasible at the aspects of technology and economy.展开更多
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and d...Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.展开更多
Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism...Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism of combined preoxidation was discussed. Results showed that 1.0 mg/L PPC with 2. 0 mg/L chlorine could further improve the quality of treated water, as indicated by residual turbidity, TOC and algae. The enhanced efficiency could be explained by the synergistic effect of the preoxidants themselves, or the effect of chlorine and the intermediate such as hydrous manganese dioxide, which was generated by potassium permanga- nate, the main ingredient of PPC.展开更多
Microplastic is a new kind of pollutant.It exists widely in the aquatic environment and seriously endangers the aquatic ecosystem.In this study,the coagulating sedimentation method was used to remove microplastics in ...Microplastic is a new kind of pollutant.It exists widely in the aquatic environment and seriously endangers the aquatic ecosystem.In this study,the coagulating sedimentation method was used to remove microplastics in water.Polyethylene(PE)was selected as the representative of microplastics,polyferric sulfate(PFS),polyaluminum chloride(PAC)and aluminum sulfate(AS)were used as coagulant,and polyacrylamide(PAM)was used as coagulant aid to study the effects of pH,coagulant concentration and sedimentation time on the removal of PE by single and composite coagulant.The results showed that when the dosage of PFS was 0.5 g/L and pH was 5.0,the removal rate could reach 82.14%,which was better than PAC and AS,indicating that PFS had better coagulation and sedimentation performance for PE;the composite coagulant of PFS+PAC+AS(1 g/L+0.2 g/L+0.2 g/L,pH was 5.0)had the highest removal rate of PE,reaching 96.06%;the removal rate of PE increased with the increase in sedimentation time,but considering that the longer sedimentation time has less contribution to the improvement of removal rate,it is recommended that 4 h is appropriate.展开更多
Sequences of wave-enhanced sediment-gravity flows(WESGFs) have been widely recognized in the marine shelf environment. In this study, we show observations of WESGF deposits in lacustrine settings using well core and t...Sequences of wave-enhanced sediment-gravity flows(WESGFs) have been widely recognized in the marine shelf environment. In this study, we show observations of WESGF deposits in lacustrine settings using well core and thin section data from the Paleogene in the Jiyang sub-basin, Bohai Bay basin, eastern China. The findings of this study include the following: 1) the sequence of WESGFs in the lacustrine basin is similar to that of marine; it consists of three units, MF1 unit: siltstone with basal erosion surface, MF2 unit: silt-streaked claystone, and MF3 unit: silty-mudstone; and 2) prodelta sand sheets are found in the lacustrine WESGF sequence and are classified as the MFd unit: clay-streaked siltstone. However, because the system size and variability in hydrodynamic conditions are different between the lacustrine and marine basins, lacustrine WESGFs do appear to have three distinguishable features: 1) the sediment grain size and sand content are slightly higher than those of the marine WESGFs; 2) lacustrine WESGFs may contain prodelta sediments or sedimentary sequences of other types of gravity flows, such as hyperpycnal flows; and 3) the scale of the sedimentary structures for lacustrine WESGFs is smaller. The WESGFs found in the continental lacustrine basin provide a new model for sediment dispersal processes in lake environments and may be helpful to explain and predict the distribution of sandy reservoirs for oil and gas exploration.展开更多
Characterization of water, waste water and natural organic matter are involved in this paper, and as well as the features of flocculation and coagulation for removing natural organic matter from water and waste water ...Characterization of water, waste water and natural organic matter are involved in this paper, and as well as the features of flocculation and coagulation for removing natural organic matter from water and waste water Novel flocculant and coagualant is strongly asked for improving removal efficiency and environment friendly. Enhanced coagulation is introduced to meet the experimental and practical requirement.展开更多
Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concent...Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concentration coagulation,with HEINE's correction,source terms for the Taylor-series expansion method of moments(TEMOM) are firstly driven in this paper.Ultra-fine particle(d0?100 mm) with initial volume fraction f?1% coagulation in a planar jet turbulence flow is simulated via the large eddy simulation(LES).The instantaneous and time-averaged particle distributions and the high concentration enhancement are given out.The particle number concentration distribution results show that the coagulation is more intense comparing to dilute case in previous research,especially near the nozzle exit.After jet flow is fully developed,the effect is much more obvious at the region between vortexes.The time-averaged γ(the high concentration enhance factor) distributes sharply and symmetrically about the jet centerline at the upstream,but becomes broad and flat at downstream where the cross-stream averaged γ fluctuates drastically.As a new attempt,this paper shows Brownian coagulation with high concentration also can be calculated via TEMOM appropriately,and the coagulation at the region between vortexes is about 1.38 times intensive of the dilute result calculated by the classic Smoluchowski theory.展开更多
Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus...Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus charges as an efficient pre-treatment for reducing viruses. This work discusses the present-day studies on virus mitigation using coagulation in its three versions i.e., chemical coagulation (CC), enhanced coagulation, and electrocoagulation (EC), and debates the new results of virus demobilization. The complexity of viruses as bioparticles and the process of virus demobilization should be adopted, even if the contribution of permeability in virus sorption and aggregation needs to be clarified. The information about virion permeability has been evaluated by interpreting empirical electrophoretic mobility (EM). No practical measures of virion permeability exist, a clear link between permeability and virion composition and morphology has not been advanced, and the direct influence of inner virion structures on surface charge or sorption has yet to be conclusively demonstrated. CC setups utilizing zero-valent or ferrous iron could be killed by iron oxidation, possibly using EC and electrooxidation (EO) methods. The oxidants evolution in the iron oxidation method has depicted promising findings in demobilizing bacteriophage MS2, even if follow-up investigations employing an elution method are needed to secure that bacteriophage elimination is related to demobilization rather than sorption. As a perspective, we could be apt to anticipate virus conduct and determine new bacteriophage surrogates following subtle aspects such as protein structures or genome size and conformation. The present discussion’s advantages would extend far beyond an application in CC—from filtration setups to demobilization by nanoparticles to modeling virus fate and persistence in nature.展开更多
Raw water from the Songhua River was treated by four types of coagulants, ferric chloride (FeC13), aluminum sulfate (A12(504)3), polyaluminum chloride (PACl) and composite polyaluminum (HPAC), in order to re...Raw water from the Songhua River was treated by four types of coagulants, ferric chloride (FeC13), aluminum sulfate (A12(504)3), polyaluminum chloride (PACl) and composite polyaluminum (HPAC), in order to remove dissolved organic matter (DOM). Considering the disinfection byproduct (DBP) precursor treatability, DOM was divided into five chemical fractions based on resin adsorption. Trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP) were measured for each fraction. The results showed that hydrophobic acids (HoA), hydrophilic matter (HIM) and hydrophobic neutral (HoN) were the dominant fractions. Although both HoN and HoA were the main THM precursors, the contribution for THMFP changed after coagulation. Additionally, HoA and HiM were the main HAA precursors, while the contribution of HoN to HAAFP significantly increased after coagulation. HoM was more easily removed than HiM, no matter which coagulant was used, especially under enhanced coagulation conditions. DOC removal was highest for enhanced coagulation using FeCl3 while DBPFP was lowest using PAC1. This could indicate that not all DOC fractions contained the precursors of DBPs. Reduction of THMFP and HAAFP by PAC1 under enhanced coagulation could reach 51% and 59% respectively.展开更多
Correlations between raw water characteristics and pH after enhanced coagulation to maximize dissolved organic matter(DOM) removal using four typical coagulants(FeCl3,Al2(SO4)3,polyaluminum chloride(PACl) and h...Correlations between raw water characteristics and pH after enhanced coagulation to maximize dissolved organic matter(DOM) removal using four typical coagulants(FeCl3,Al2(SO4)3,polyaluminum chloride(PACl) and high performance polyaluminum chloride(HPAC)) without pH control were investigated.These correlations were analyzed on the basis of the raw water quality and the chemical and physical fractionations of DOM of thirteen Chinese source waters over three seasons.It was found that the final pH after enhanced coagulation for each of the four coagulants was in?uenced by the content of removable DOM(i.e.hydrophobic and higher apparent molecular weight(AMW) DOM),the alkalinity and the initial pH of raw water.A set of feed-forward semi-empirical models relating the final pH after enhanced coagulation for each of the four coagulants with the raw water characteristics were developed and optimized based on correlation analysis.The established models were preliminarily validated for prediction purposes,and it was found that the deviation between the predicted data and actual data was low.This result demonstrated the potential for the application of these models in practical operation of drinking water treatment plants.展开更多
文摘Systematic investigation on enhancing removal of natural organic matter (NOM) using inorganic polymer flocculant (IPF), polyaluminum chloride(PACI) and polyacrylamide(PAM) was performed in a typical south-China source water. Enhanced coagulation and applying polymer flocculant-aid were compared through jar tests and pilot tests. Raw water and settled water were characterized and fractionated by resin adsorption. The results show that DOC composes major part of TOC. The DOC distribution keeps relatively stable all around the year with typical high amounts of the hydrophilic matter around 50%. The distribution between HoB, HoA and HoN varies and undergoes fluctuation with the year round. During the summer season, the HoN becomes gradually the major part in hydrophobic parts. PACI with the species being tailor-made shows little pH effect during coagulation. The enhanced coagulation dosage for PACI could be 4.5 mg/L for the typical source water. The highest TOC removal achieved 31%. To be economically, 3 mg/L dose is the optimum dosage. Although hydrophilic fractions of NOM of both treatment strategies are removed about 30%, NOM causing UV254 absorbance were well removed(about 90%). Hydrophobic bases and acids fractions are much more removed under enhanced conditions. The hydrophilic fraction could be better removed using PAM, the polymer coagulant aid.
文摘Presents the effect of enhanced coagulation with a composite chemical containing ferrate upon algae removal with results showing that enhanced coagulation is efficient for algae removal. A comparison made between enhanced coagulation with composite ferrate and conventional pre chlorination, indicates that algae removal efficiency of the former was higher than that of the latter. And the algae removal efficiency can be further improved by extending the time of enhanced coagulation with the composite chemical containing ferrate.
文摘In order to evaluate the processing efficiency of coagulation sedimentation on wastewater from dairy farm and to provide reference for wastewater treat- ment, an experimental study was carried out to investigate effects of coagulant dosage, types, pH, dosage of coagulant aids PAM on removal rate of COD, turbidity and SS in wastewater from dairy farm. The results showed that PAC displayed higher effectiveness in treatment; the removal rates of COD, turbidity and SS were 61.4%, 86.6% and 94.5% respectively when pH was 11.0, PAC dosage was 150 mg/L, and PAM dosage was 4 mg/L. The results indicated that coagulation sedimentation could reduce organic content of wastewater effectively and alleviate the load of subsequent biochemical treatment.
文摘For the wastewater containing high-concentration Hg,the feasibility of high-concentration Hg in wastewater treated by coagulation sedimentation,adsorption and the combined process was studied. Research results showed that if using the single coagulation sedimentation process,when FeSO_4·7H_2O dosage was 1. 39 g / L,and NaOH dosage was 0. 40 g / L,it could meet discharge requirement,but the reagent cost was 13. 1yuan / t,which was high. Because that there was subsequent adsorption process,it was selected 0. 28 g / L of FeSO_4·7H_2O and 0. 36 g / L of NaOH,and the estimated reagent cost was 2. 62 yuan / t. In selection process of adsorption materials,powdered activated carbon,granular activated carbon and diatomite all could effectively adsorb Hg,and the technology was feasible. When using the combined process of coagulation sedimentation + adsorption to treat the wastewater containing high-concentration Hg( 800 μg / L),removal rate could reach 99%,and operation cost was 2. 71 yuan. It could meet the requirement of sewage discharged into sewer( 20 μg / L) at the technology,and was acceptable at the economy.Therefore,treatment of wastewater containing high-concentration Hg by the combined process was feasible at the aspects of technology and economy.
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
文摘Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.
基金Sponsored by the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (Grant No.HITQNJS.2008.042)State KeyLab of Urban Water Resource and Environment(Grant No. HIT.ES200803)Harbin Science and Technology Development Program for Young Innovative Scholars(Grant No.2009RFQXS010)
文摘Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism of combined preoxidation was discussed. Results showed that 1.0 mg/L PPC with 2. 0 mg/L chlorine could further improve the quality of treated water, as indicated by residual turbidity, TOC and algae. The enhanced efficiency could be explained by the synergistic effect of the preoxidants themselves, or the effect of chlorine and the intermediate such as hydrous manganese dioxide, which was generated by potassium permanga- nate, the main ingredient of PPC.
基金Supported by Innovation and Entrepreneurship Training Program for College Students(202210580015).
文摘Microplastic is a new kind of pollutant.It exists widely in the aquatic environment and seriously endangers the aquatic ecosystem.In this study,the coagulating sedimentation method was used to remove microplastics in water.Polyethylene(PE)was selected as the representative of microplastics,polyferric sulfate(PFS),polyaluminum chloride(PAC)and aluminum sulfate(AS)were used as coagulant,and polyacrylamide(PAM)was used as coagulant aid to study the effects of pH,coagulant concentration and sedimentation time on the removal of PE by single and composite coagulant.The results showed that when the dosage of PFS was 0.5 g/L and pH was 5.0,the removal rate could reach 82.14%,which was better than PAC and AS,indicating that PFS had better coagulation and sedimentation performance for PE;the composite coagulant of PFS+PAC+AS(1 g/L+0.2 g/L+0.2 g/L,pH was 5.0)had the highest removal rate of PE,reaching 96.06%;the removal rate of PE increased with the increase in sedimentation time,but considering that the longer sedimentation time has less contribution to the improvement of removal rate,it is recommended that 4 h is appropriate.
基金support by the National Nature Science Foundation of China (General Program) Grant No. 41572134National Program on Key Basic Research Project of China (973 Program) Grant No. 2014CB239102
文摘Sequences of wave-enhanced sediment-gravity flows(WESGFs) have been widely recognized in the marine shelf environment. In this study, we show observations of WESGF deposits in lacustrine settings using well core and thin section data from the Paleogene in the Jiyang sub-basin, Bohai Bay basin, eastern China. The findings of this study include the following: 1) the sequence of WESGFs in the lacustrine basin is similar to that of marine; it consists of three units, MF1 unit: siltstone with basal erosion surface, MF2 unit: silt-streaked claystone, and MF3 unit: silty-mudstone; and 2) prodelta sand sheets are found in the lacustrine WESGF sequence and are classified as the MFd unit: clay-streaked siltstone. However, because the system size and variability in hydrodynamic conditions are different between the lacustrine and marine basins, lacustrine WESGFs do appear to have three distinguishable features: 1) the sediment grain size and sand content are slightly higher than those of the marine WESGFs; 2) lacustrine WESGFs may contain prodelta sediments or sedimentary sequences of other types of gravity flows, such as hyperpycnal flows; and 3) the scale of the sedimentary structures for lacustrine WESGFs is smaller. The WESGFs found in the continental lacustrine basin provide a new model for sediment dispersal processes in lake environments and may be helpful to explain and predict the distribution of sandy reservoirs for oil and gas exploration.
文摘Characterization of water, waste water and natural organic matter are involved in this paper, and as well as the features of flocculation and coagulation for removing natural organic matter from water and waste water Novel flocculant and coagualant is strongly asked for improving removal efficiency and environment friendly. Enhanced coagulation is introduced to meet the experimental and practical requirement.
基金supported by National Natural Science Foundation of China (Grant No. 50976107)National Key Technology R&D Program of China (Grant No. 2009BAF39B01)the Science Foundation of Zhejiang Sci-Tech University (ZSTU) of China (Grant No. 1003808-Y)
文摘Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concentration coagulation,with HEINE's correction,source terms for the Taylor-series expansion method of moments(TEMOM) are firstly driven in this paper.Ultra-fine particle(d0?100 mm) with initial volume fraction f?1% coagulation in a planar jet turbulence flow is simulated via the large eddy simulation(LES).The instantaneous and time-averaged particle distributions and the high concentration enhancement are given out.The particle number concentration distribution results show that the coagulation is more intense comparing to dilute case in previous research,especially near the nozzle exit.After jet flow is fully developed,the effect is much more obvious at the region between vortexes.The time-averaged γ(the high concentration enhance factor) distributes sharply and symmetrically about the jet centerline at the upstream,but becomes broad and flat at downstream where the cross-stream averaged γ fluctuates drastically.As a new attempt,this paper shows Brownian coagulation with high concentration also can be calculated via TEMOM appropriately,and the coagulation at the region between vortexes is about 1.38 times intensive of the dilute result calculated by the classic Smoluchowski theory.
文摘Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus charges as an efficient pre-treatment for reducing viruses. This work discusses the present-day studies on virus mitigation using coagulation in its three versions i.e., chemical coagulation (CC), enhanced coagulation, and electrocoagulation (EC), and debates the new results of virus demobilization. The complexity of viruses as bioparticles and the process of virus demobilization should be adopted, even if the contribution of permeability in virus sorption and aggregation needs to be clarified. The information about virion permeability has been evaluated by interpreting empirical electrophoretic mobility (EM). No practical measures of virion permeability exist, a clear link between permeability and virion composition and morphology has not been advanced, and the direct influence of inner virion structures on surface charge or sorption has yet to be conclusively demonstrated. CC setups utilizing zero-valent or ferrous iron could be killed by iron oxidation, possibly using EC and electrooxidation (EO) methods. The oxidants evolution in the iron oxidation method has depicted promising findings in demobilizing bacteriophage MS2, even if follow-up investigations employing an elution method are needed to secure that bacteriophage elimination is related to demobilization rather than sorption. As a perspective, we could be apt to anticipate virus conduct and determine new bacteriophage surrogates following subtle aspects such as protein structures or genome size and conformation. The present discussion’s advantages would extend far beyond an application in CC—from filtration setups to demobilization by nanoparticles to modeling virus fate and persistence in nature.
基金supported by the National Natural Science Foundation of China (No. 51025830, 51008293)the Funds for the Creative Research Groups of China (No. 51221892)
文摘Raw water from the Songhua River was treated by four types of coagulants, ferric chloride (FeC13), aluminum sulfate (A12(504)3), polyaluminum chloride (PACl) and composite polyaluminum (HPAC), in order to remove dissolved organic matter (DOM). Considering the disinfection byproduct (DBP) precursor treatability, DOM was divided into five chemical fractions based on resin adsorption. Trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP) were measured for each fraction. The results showed that hydrophobic acids (HoA), hydrophilic matter (HIM) and hydrophobic neutral (HoN) were the dominant fractions. Although both HoN and HoA were the main THM precursors, the contribution for THMFP changed after coagulation. Additionally, HoA and HiM were the main HAA precursors, while the contribution of HoN to HAAFP significantly increased after coagulation. HoM was more easily removed than HiM, no matter which coagulant was used, especially under enhanced coagulation conditions. DOC removal was highest for enhanced coagulation using FeCl3 while DBPFP was lowest using PAC1. This could indicate that not all DOC fractions contained the precursors of DBPs. Reduction of THMFP and HAAFP by PAC1 under enhanced coagulation could reach 51% and 59% respectively.
基金supported by the National Natural Science Foundation of China (No. 50921064,51025830)the National Basic Research Program (973) of China(No. 2011CB933700)the Special Co-construction Project of Beijing Municipal Commission of Education
文摘Correlations between raw water characteristics and pH after enhanced coagulation to maximize dissolved organic matter(DOM) removal using four typical coagulants(FeCl3,Al2(SO4)3,polyaluminum chloride(PACl) and high performance polyaluminum chloride(HPAC)) without pH control were investigated.These correlations were analyzed on the basis of the raw water quality and the chemical and physical fractionations of DOM of thirteen Chinese source waters over three seasons.It was found that the final pH after enhanced coagulation for each of the four coagulants was in?uenced by the content of removable DOM(i.e.hydrophobic and higher apparent molecular weight(AMW) DOM),the alkalinity and the initial pH of raw water.A set of feed-forward semi-empirical models relating the final pH after enhanced coagulation for each of the four coagulants with the raw water characteristics were developed and optimized based on correlation analysis.The established models were preliminarily validated for prediction purposes,and it was found that the deviation between the predicted data and actual data was low.This result demonstrated the potential for the application of these models in practical operation of drinking water treatment plants.