BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal gangli...BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles with ultrasound was significantly greater than the other groups, and no obvious damage was detected in the RGCs. CONCLUSION: Under irradiation of low-frequency ultrasound waves, ultrasound-mediated microbubble destruction was effective and resulted in safe transfection of the EGFP gene to the RGCs.展开更多
As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of a...As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of ammonium sulfate precipitation, size exclusion chromatography, and anion exchange chromatography was devel- oped for the purification of eGFP. Based on the proposed procedure, recombinant eGFP with an electrophoretic pu- rity was achieved in combination with an overall yield of 66% and a purification factor of 17.9. The fluorescent spectrometry of purified eGFP and lysate from E. coli strain expressing eGFP exhibited the same wavelength of ex- citation and emission maxima, indicating that the purification procedure did not influence the construct and fluo- rescent characteristics of desired protein. The procedure mentioned was easy to scale up for the purification of large quantities of eGFP.展开更多
Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inne...Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.展开更多
Objective:To study the role of bone marrow mesenchymal stem cells(BMSCs)in construction of vascularized engineered tissue.Methods:hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence p...Objective:To study the role of bone marrow mesenchymal stem cells(BMSCs)in construction of vascularized engineered tissue.Methods:hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence protein;green fluorescent protein(GFP)-CMV.Then the recombinant shuttle plasmid was transfected into BMSCs with Lipofectamine^(TM)2000 for packaging and amplifying.hVTGF165 mRNA expression in BMSCs cells was tested.Results:The sequence of hVEGFI65 in pShutlle-GFP-hVFGF165 plasmid was confirimed by double-enzyme cleavage method and sequencing.hVECF165 was highly expressed in BMSCs.Conclusions:The GFP/hVECF165 recombinant plasmid vector was constructed successfully and expressed effectively in host cells,which may be helpful for discussing the possibility of the application of VEGF165-BMSCs in tissue engineering and ischemic disease cure.展开更多
AIM: To explore the effects of ultrasound exposure combined with microbubble contrast agent (SonoVue) on the permeability of the cellular membrane and on the expression of plasrnid DNA encoding enhanced green fluor...AIM: To explore the effects of ultrasound exposure combined with microbubble contrast agent (SonoVue) on the permeability of the cellular membrane and on the expression of plasrnid DNA encoding enhanced green fluorescent protein (pEGFP) transfer into human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs with fluorescein isothiocyanatedextran (FD500) and HUVECs with pEGFP were exposed to continuous wave (1.9 MHz, 80.0 mW/cm^2) for 5 min, with or without a SonoVue. The percentage of FD500 taken by the HUVECs and the transient expression rate of pEGFP in the HUVECs were examined by fluorescence microscopy and flow cytornetry, respectively. RESULTS: The percentage of FDS00-positive HUVECs in the group of ultrasound exposure combined with SonoVue was significantly higher than that of the group of ultrasound exposure alone (24.0%± 5.5% vs 66.6% ± 4.1%, P 〈 0.001). Compared with the group of ultrasound exposure alone, the transfection expression rate of pEGFP in HUVECs was markedly increased with the addition of SonoVue (16.1% ± 1.9% vs 1.5% ± 0.2%, P 〈 0.001). No statistical significant difference was observed in the HUVECs survival rates between the ultrasound group with and without the addition of SonoVue (94.1% ± 2.3% vs 91.1% ± 4.1% ). CONCLUSION: The cell membrane permeability of HUVECs and the transfection efficiency of pEGFP into HUVECs exposed to ultrasound are significantly increased after addition of an ultrasound contrast agent without obvious damage to the survival of HUVECs. This non- invasive gene transfer method may be a useful tool for clinical gene therapy of hepatic tumors.展开更多
The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to p...The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5% ± 2.2% v.s. 22.9% 4± 2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells.展开更多
Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA ...Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/ chicken beta-actin promoter/ beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.Results We generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the 'green' ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The 'green' embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence. Conclusions The hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.展开更多
基金the National Natural Science Foundation of China,No.30430230
文摘BACKGROUND: Studies have demonstrated that ultrasound-mediated microbubble destruction significantly improves transfection efficiency of enhanced green fluorescent protein (EGFP) in in vitro cultured retinal ganglial cells (RGCs). OBJECTIVE: To investigate the feasibility of ultrasound-mediated microbubble destruction for EGFP transfection in rat RGCs, and to compare efficiency and cell damage with traditional transfection methods. DESIGN, TIME AND SETTING: In vivo, gene engineering experiment. The study was performed at the Central Laboratory, Institute of Ultrasonic Imaging, Chongqing Medical University from March to July 2008. MATERIALS: Eukaryotic expression vector plasmid EGFP and microbubbles were prepared by the Institute of Ultrasonic Imaging, Chongqing Medical University. The microbubbles were produced at a concentration of 8.7 × 10^11/L, with a 2-4 μm diameter, and 10-hour half-life in vitro. METHODS: A total of 50 Sprague Dawley rats were randomly assigned to four groups. Normal controls (n = 5) were infused with 5 μL normal saline to the vitreous cavity; the naked plasmid group (n = 15) was infused with 5 pL EGFP plasmid to the vitreous cavity; in the plasmid with ultrasound group (n = 15), the eyes were irradiated with low-energy ultrasound wave (0.5 W/cm^2) for a total of 60 seconds (irradiated for 5 seconds, at 10-second intervals) immediately following infusion of EGFP plasmids to the vitreous cavities. In the microbubble-ultrasound group (n = 15), the eyes were irradiated with the same power of ultrasonic wave immediately following infusion of microbubbles containing EGFP plasmids to the vitreous cavities. MAIN OUTCOME MEASURES: After 7 days, retinal preparations and EGFP expression in RGCs were observed by fluorescence microscopy. RGC quantification in the retinal ganglion cell layer was performed. In addition, EGFP mRNA expression was semi-quantitatively determined by RT-PCR. RESULTS: The transfection efficiency of EGFP to RGCs by microbubbles with ultrasound was significantly greater than the other groups, and no obvious damage was detected in the RGCs. CONCLUSION: Under irradiation of low-frequency ultrasound waves, ultrasound-mediated microbubble destruction was effective and resulted in safe transfection of the EGFP gene to the RGCs.
基金Supported by the National Natural Science Foundation of China (No. 20306024, No. 20476082), Tianjin Applied FundamentalResearch Project (No. 0436048-11) and the Program for Changjiang Scholars and Innovative Research Team in University from the Ministry of Education of China.
文摘As an excellent reporter molecule, enhanced green fluorescent protein (eGFP) was widely used for gene expression and regulation and was generally expressed in Escherichia coli strain. A rapid procedure consisting of ammonium sulfate precipitation, size exclusion chromatography, and anion exchange chromatography was devel- oped for the purification of eGFP. Based on the proposed procedure, recombinant eGFP with an electrophoretic pu- rity was achieved in combination with an overall yield of 66% and a purification factor of 17.9. The fluorescent spectrometry of purified eGFP and lysate from E. coli strain expressing eGFP exhibited the same wavelength of ex- citation and emission maxima, indicating that the purification procedure did not influence the construct and fluo- rescent characteristics of desired protein. The procedure mentioned was easy to scale up for the purification of large quantities of eGFP.
基金National Natural Science Foundation of China (Grant Nos 30470074,30671615)Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-N-021).
文摘Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.
基金supported by grants from the National Natural Science Foundation of Hainan Province(30635)Foundation of Health Department of Hainan Province(2008-40)
文摘Objective:To study the role of bone marrow mesenchymal stem cells(BMSCs)in construction of vascularized engineered tissue.Methods:hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence protein;green fluorescent protein(GFP)-CMV.Then the recombinant shuttle plasmid was transfected into BMSCs with Lipofectamine^(TM)2000 for packaging and amplifying.hVTGF165 mRNA expression in BMSCs cells was tested.Results:The sequence of hVEGFI65 in pShutlle-GFP-hVFGF165 plasmid was confirimed by double-enzyme cleavage method and sequencing.hVECF165 was highly expressed in BMSCs.Conclusions:The GFP/hVECF165 recombinant plasmid vector was constructed successfully and expressed effectively in host cells,which may be helpful for discussing the possibility of the application of VEGF165-BMSCs in tissue engineering and ischemic disease cure.
基金Supported by grants from the Nationl Natural Scientific Foundation of China, No.30300082, 30470467, and Scientific Foundation Committee of Guangdong Province, China, No.04009360
文摘AIM: To explore the effects of ultrasound exposure combined with microbubble contrast agent (SonoVue) on the permeability of the cellular membrane and on the expression of plasrnid DNA encoding enhanced green fluorescent protein (pEGFP) transfer into human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs with fluorescein isothiocyanatedextran (FD500) and HUVECs with pEGFP were exposed to continuous wave (1.9 MHz, 80.0 mW/cm^2) for 5 min, with or without a SonoVue. The percentage of FD500 taken by the HUVECs and the transient expression rate of pEGFP in the HUVECs were examined by fluorescence microscopy and flow cytornetry, respectively. RESULTS: The percentage of FDS00-positive HUVECs in the group of ultrasound exposure combined with SonoVue was significantly higher than that of the group of ultrasound exposure alone (24.0%± 5.5% vs 66.6% ± 4.1%, P 〈 0.001). Compared with the group of ultrasound exposure alone, the transfection expression rate of pEGFP in HUVECs was markedly increased with the addition of SonoVue (16.1% ± 1.9% vs 1.5% ± 0.2%, P 〈 0.001). No statistical significant difference was observed in the HUVECs survival rates between the ultrasound group with and without the addition of SonoVue (94.1% ± 2.3% vs 91.1% ± 4.1% ). CONCLUSION: The cell membrane permeability of HUVECs and the transfection efficiency of pEGFP into HUVECs exposed to ultrasound are significantly increased after addition of an ultrasound contrast agent without obvious damage to the survival of HUVECs. This non- invasive gene transfer method may be a useful tool for clinical gene therapy of hepatic tumors.
基金supported by a grant from the BioGreen 21 program(Nos.PJ009080,PJ008067 and PJ007990022012)Rural Development Administration(RDA),Republic of Korea
文摘The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5% ± 2.2% v.s. 22.9% 4± 2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells.
文摘Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/ chicken beta-actin promoter/ beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.Results We generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the 'green' ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The 'green' embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence. Conclusions The hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.