期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Polyvinyl Alcohol/Acrylamide Hydrogel with Enhanced Mechanical Properties Promotes Full-Thickness Skin Defect Healing by Regulating Immunomodulation and Angiogenesis Through Paracrine Secretion 被引量:1
1
作者 Peng Wang Liping Qian +9 位作者 Huixin Liang Jianhao Huang Jing Jin Chunmei Xie Bin Xue Jiancheng Lai Yibo Zhang Lifeng Jiang Lan Li Qing Jiang 《Engineering》 SCIE EI CAS CSCD 2024年第6期138-151,共14页
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na... Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration. 展开更多
关键词 Polyvinyl alcohol/acrylamide hydrogel mechanical property enhancement Paracrine effect Skin regeneration Signaling pathways
下载PDF
Performance-control-orientated hybrid metal additive manufacturing technologies:state of the art,challenges,and future trends
2
作者 Jiming Lv Yuchen Liang +6 位作者 Xiang Xu Gang Xu Hongmei Zhang Haifei Lu Kaiyu Luo Jie Cai Jinzhong Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期274-328,共55页
Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as therma... Metal additive manufacturing(AM)technologies have made significant progress in the basic theoretical field since their invention in the 1970s.However,performance instability during continuous processing,such as thermal history,residual stress accumulation,and columnar grain epitaxial growth,consistently hinders their broad application in standardized industrial production.To overcome these challenges,performance-control-oriented hybrid AM(HAM)technologies have been introduced.These technologies,by leveraging external auxiliary processes,aim to regulate microstructural evolution and mechanical properties during metal AM.This paper provides a systematic and detailed review of performance-control-oriented HAM technology,which is categorized into two main groups:energy field-assisted AM(EFed AM,e.g.ultrasonic,electromagnetic,and heat)technologies and interlayer plastic deformation-assisted AM(IPDed AM,e.g.laser shock peening,rolling,ultrasonic peening,and friction stir process)technologies.This review covers the influence of external energy fields on the melting,flow,and solidification behavior of materials,and the regulatory effects of interlayer plastic deformation on grain refinement,nucleation,and recrystallization.Furthermore,the role of performance-control-oriented HAM technologies in managing residual stress conversion,metallurgical defect closure,mechanical property improvement,and anisotropy regulation is thoroughly reviewed and discussed.The review concludes with an analysis of future development trends in EFed AM and IPDed AM technologies. 展开更多
关键词 hybrid additive manufacturing in-situ/interlayer plastic deformation auxiliary energy fields microstructure customization mechanical properties enhancement
下载PDF
Enhancement of Mechanical Properties of Natural Rubber with Maleic Anhydride Grafted Liquid Polybutadiene Functionalized Graphene Oxide 被引量:1
3
作者 Long-mei Wu 廖双泉 +2 位作者 Sheng-jun Zhang Xiao-ying Bai Xue Hou 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第7期1058-1068,共11页
An effective procedure has been developed to synthesize the functionalized graphene oxide grafted by maleic anhydride grafted liquid polybutadiene(MLPB-GO). Fourier transform spectroscopy and X-ray photoelectron spe... An effective procedure has been developed to synthesize the functionalized graphene oxide grafted by maleic anhydride grafted liquid polybutadiene(MLPB-GO). Fourier transform spectroscopy and X-ray photoelectron spectroscopy indicate the successful functionalization of GO. The NR/MLPB-GO composites were then prepared by the co-coagulation process. The results show that the mechanical properties of NR/MLPB-GO composites are obviously superior to those of NR/GO composites and neat NR. Compared with neat NR, the tensile strength, modulus at 300% strain and tear strength of NR composite containing 2.12 phr MLPB-GO are significantly increased by 40.5%, 109.1% and 85.0%, respectively. Dynamic mechanical analysis results show that 84% increase in storage modulus and 2.9 K enhancement in the glass transition temperature of the composite have been achieved with the incorporation of 2.12 phr MLPB-GO into NR. The good dispersion of GO and the strong interface interaction in the composites are responsible for the unprecedented reinforcing efficiency of MLPB-GO towards NR. 展开更多
关键词 Enhancement Maleic anhydride-grafted liquid polybutadiene Graphene oxide Composites mechanical properties
原文传递
Intrinsically reinforced silks obtained by incorporation of graphene quantum dots into silkworms 被引量:9
4
作者 Lin Ma Maxwell Akologo Akurugu +4 位作者 Vivian Andoh Haiyan Liu Jiangchao Song Guohua Wu Long Li 《Science China Materials》 SCIE EI CSCD 2019年第2期245-255,共11页
Silkworm silks have been widely used in a variety of fields due to their sensuousness, luster and excellent mechanical properties. Researchers have paid special attention in improving the mechanical properties of silk... Silkworm silks have been widely used in a variety of fields due to their sensuousness, luster and excellent mechanical properties. Researchers have paid special attention in improving the mechanical properties of silks. In this work,Bombyx mori larval silkworms are injected with graphene quantum dots(GQDs) through a vascular injection to enhance mechanical properties of the silkworm silks. The GQDs can be incorporated into the silkworm silk gland easily due to hemolymph circulation and influence the spinning process of silkworm. The breaking strength, elongation at break and toughness modulus of the silks increase by 2.74, 1.33 and 3.62 times, respectively, by injecting per individual with 0.6 μg GQDs. Wide-angle X-ray scattering indicates that the size ofβ-sheet nanocrystals in GQDs-silks is smaller than that in control-silks. Infrared spectra suggest that GQDs confine the conformation transition of silk fibroin to β-sheet from random coil/α-helix, and the change of the size and content of β-sheet may be the reason for the improvement of the mechanical properties. The toxicity and safety limit of GQDs incorporated into each silkworm is also evaluated, and the results show that the upmost dose of GQDs per silkworm is30.0 μg. The successful obtainment of reinforced silks by in vivo uptake of GQDs provides a promising route to produce high-strength silks. 展开更多
关键词 silkworm silks graphene quantum dots decrease of β-sheets enhanced mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部