Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume i...This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction.展开更多
CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio...CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.展开更多
Boosted by economic development and rising living standards,the world's carbon dioxide emissions remain high.Maintaining temperature rises below 1.5℃ by the end of the century requires rapid global carbon capture...Boosted by economic development and rising living standards,the world's carbon dioxide emissions remain high.Maintaining temperature rises below 1.5℃ by the end of the century requires rapid global carbon capture and storage implementation.The successful application of carbon capture,utilization,and storage(CCUS)technology in oilfields has become the key to getting rid of this predicament.Foam flooding,as an organic combination of gas and chemical flooding,became popular in the 1950s.Notwithstanding the irreplaceable advantages,as a thermodynamically unstable system,foam's stability has long restricted its development in enhanced oil and gas recovery.With special surface/interface effects and small-size effects,nanoparticles can be used as foam stabilizers to enhance foam stability,thereby improving foam seepage and oil displacement effects in porous media.In this paper,the decay kinetics and the stabilization mechanisms of nanoparticle-reinforced foams were systematically reviewed.The effects of nanoparticle characteristics,including particle concentration,surface wettability,particle size,and type,and reservoir environment factors,including oil,temperature,pressure,and salinity on the foam stabilization ability were analyzed in detail.The seepage and flooding mechanisms of nanoparticle-reinforced foams were summarized as:improving the plugging properties of foams,enhancing the interaction between foams and crude oil,and synergistically adjusting the wettability of reservoir rocks.Finally,the challenges in the practical application of nanoparticle-reinforced foams were highlighted,and the development direction was proposed.The development of nanoparticle-reinforced foam can open the way toward adaptive and evolutive EOR technology,taking one further step towards the high-efficiency production of the petroleum industry.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displa...Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displacement mechanisms of shale oil extraction by CO_(2)injection,and the influences of CO_(2)pre-pad on shale mechanical properties.Numerical simulations were performed about influences of CO_(2)pre-pad fracturing and puff-n-huff for energy replenishment on the recovery efficiency.The findings obtained were applied to the field tests of CO_(2)pre-pad fracturing and single well puff-n-huff.The results show that the efficiency of CO_(2)puff-n-huff is affected by micro-and nano-scale effect,kerogen,adsorbed oil and so on,and a longer soaking time in a reasonable range leads to a higher exploitation degree of shale oil.In the"injection+soaking"stage,the exploitation degree of heavy hydrocarbons is enhanced by CO_(2)through its effects of solubility-diffusion and mass-transfer.In the"huff"stage,crude oil in large pores is displaced by CO_(2)to surrounding larger pores or bedding fractures and finally flows to the production well.The injection of CO_(2)pre-pad is conducive to keeping the rock brittle and reducing the fracture breakdown pressure,and the CO_(2)is liable to filter along the bedding surface,thereby creating a more complex fracture.Increasing the volume of CO_(2)pre-pad can improve the energizing effect,and enhance the replenishment of formation energy.Moreover,the oil recovery is more enhanced by CO_(2)huff-n-puff with the lower shale matrix permeability,the lower formation pressure,and the larger heavy hydrocarbon content.The field tests demonstrate a good performance with the pressure maintained well after CO_(2)pre-pad fracturing,the formation energy replenished effectively after CO_(2)huff-n-puff in a single well,and the well productivity improved.展开更多
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri...Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.展开更多
Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this stu...Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this study,surface-functionalized cellulose nanocrystals(SF-CNCs)were prepared via hy-drochloric acid hydrolysis and chemical modification,with adaptable nanosize and considerable dispersion stability in low-permeability reservoirs.The SF-CNCs were structurally characterized by FT-IR,Cryo-TEM,which have a diameter of 5-10 nm and a length of 100-200 nm.The SF-CNC dispersions possessed higher stability and stronger salt-tolerance than those of corresponding CNC dispersions,due to the strong hydrophilicity of the sulfonic acid group.It was synergistically used with a non-ionic surfactant(APG1214)to formulate a combined flooding system(0.1 wt%SF-CNC+0.2 wt%APG1214).The combined flooding system exhibits strong emulsification stability,low oil-water interfacial tension of o.03 mN/m,and the ability to alter the wettability for oil-wetting rocks.Furthermore,the combined system was_able to provide an optimum EOR efficiency of 20.2%in low-permeability cores with 30.13×10^(-3)μm^(2).Notably.it can enlarge the sweep volume and increase the displacement efficiency simultaneously.Overall,the newly formulated nanocellulose/surfactant combined system exhibits a remarkable EoR performance in low-permeability reservoirs.展开更多
Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling...Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.展开更多
India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required t...India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.展开更多
Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dis...Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.展开更多
A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving...A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.展开更多
This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta po...This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta potential measurement,and spontaneous imbibition experiment.The introduction of 5%DTPA-sW solution resulted in a significant decrease in the rock-oil contact angle from 143°to 23,along with a reduction in the Zeta potential from-2.29 mV to-13.06 mV,thereby altering the rock surface charge and shifting its wettability from an oil-wet state to a strongly water-wet state.The presence or absence of potential determining ions(Ca^(2+),Mg^(2+),SO_(4)^(2-))in the solution did not impact the effectiveness of DTPA in changing the rock wettability.However,by tripling the concentration of these ions in the solution,the performance of 5%DTPA-SW solution in changing wettability was impaired.Additionally,spontaneous imbibition tests demonstrated that the 5%DTPA-SW solution led to an increase in oil recovery up to 39.6%.Thus,the optimum mass fraction of DTPA for changing sandstone wettability was determined to be5%.展开更多
Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to inte...Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process.展开更多
In chemical enhanced oil recovery, surfactants are injected into the reservoir with the intention to lower interfacial tension (IFT) between the water and oil phases, and thereby bring about efficient displacement of ...In chemical enhanced oil recovery, surfactants are injected into the reservoir with the intention to lower interfacial tension (IFT) between the water and oil phases, and thereby bring about efficient displacement of oil. However, the adsorption of the surfactants to reservoir rock surfaces leads to the loss and reduction in concentration of the surfactants, which in turn reduces the overall efficiency of the oil recovery process, with attendant financial losses. In this work, the adsorption of Quillaja Saponaria (QS), a novel, natural, non-ionic surfactant, on crushed sandstone reservoir rock is investigated. X-ray diffraction (XRD) study of clean sandstone particles has been undertaken to determine the main components present in the sand particles. The conductivity method was used to measure CMC and the surfactant concentrations in aqueous solutions. Batch adsorption experiments were used to determine the amount of QS adsorbed on rock surface. Equilibrium conditions were reached after almost 5 days. From the results of the study, the Langmuir isotherm model is more suited for predicting the adsorption behaviour of QS on sandstone. The kinetic adsorption of QS obeys the pseudo-second order model. This study is particularly relevant in surfactant selection for chemical EOR processes.展开更多
This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for t...This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for trial in oilfields. The MEOR mechanism and the influence of adsorption, diffusion, metabolism, nutrition, porosity, and permeability are analyzed. The research indicates that different microbes have different efficiencies in EOR and that different culture types play different roles in EOR. The effect of syrup is better than that of glucose, and larger porosity is favorable to the reproduction and growth of microbes, thereby improving the oil recovery. Using crude oil as a single carbon source is more appreciable because of the decrease in cost of oil recovery. At the end of this paper, the development of polymerase chain reaction (PCR) for the future is discussed.展开更多
This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected f...This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected for use in field trials. Behaviors of bacteria activated in the reservoir, oil recovery and water cut, and the viscosity of crude oil produced through huff & puff testing and flooding with molasses-injection tests, have been investigated in situ. CJF-002, which produces biopolysaccharide, is the best among the microbes used for field trials, as it can use molasses as nutrient and produce a small quantity of CO2 and a mass of water-insoluble biopolymer. The metabolic behavior in the reservoir showed that CJF-002 had a good potentiality for MEOR.展开更多
Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted...Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique.展开更多
Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shal...Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shale oil are put forward.Through key exploration and research on fluid occurrence,fluid phase change,exploitation mechanism,oil start-up mechanism,flow regime/pattern,exploitation mode and enhanced oil recovery(EOR)of shale reservoirs with different storage spaces,multi-scale occurrence states of shale oil and phase behavior of fluid in nano confined space were provided,the multi-phase,multi-scale flow mode and production mechanism with hydraulic fracture-shale bedding fracture-matrix infiltration as the core was clarified,and a multi-scale flow mathematical model and recoverable reserves evaluation method were preliminarily established.The feasibility of development mode with early energy replenishment and recovery factor of 3o%was discussed.Based on these,the researches of key theories and technologies for effective development of Gulong shale oil are proposed to focus on:(1)in-situ sampling and non-destructive testing of core and fluid;(2)high-temperature,high-pressure,nano-scale laboratory simulation experiment;(3)fusion of multi-scale multi-flow regime numerical simulation technology and large-scale application software;(4)waterless(CO_(2))fracturing technique and the fracturing technique for increasing the vertical fracture height;(5)early energy replenishment to enhance oil recovery;(6)lifecycle technical and economic evaluation.Moreover,a series of exploitation tests should be performed on site as soon as possible to verify the theoretical understanding,optimize the exploitation mode,form supporting technologies,and provide a generalizable development model,thereby supporting and guiding the effective development and production of Gulong shale oil.展开更多
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
基金This study has been funded by the National Science Fund for Distinguished Young Scholars(No.52204063)Science Foundation of China University of Petroleum,Beijing(No.2462023BJRC025).Moreover,we would like to express our heartfelt appreciation to the Computational Geosciences group in the Department of Mathematics and Cybernetics at SINTEF Digital for developing and providing the free open-source MATLAB Reservoir Simulation Toolbox(MRST)used in this research.
文摘This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction.
基金The financial supports received from the National Natural Science Foundation of China(Nos.22178378,22127812)。
文摘CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.
基金The authors thank the National Natural Science Foundation of China(Grant 52004305)the Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC005)for the support of this work.
文摘Boosted by economic development and rising living standards,the world's carbon dioxide emissions remain high.Maintaining temperature rises below 1.5℃ by the end of the century requires rapid global carbon capture and storage implementation.The successful application of carbon capture,utilization,and storage(CCUS)technology in oilfields has become the key to getting rid of this predicament.Foam flooding,as an organic combination of gas and chemical flooding,became popular in the 1950s.Notwithstanding the irreplaceable advantages,as a thermodynamically unstable system,foam's stability has long restricted its development in enhanced oil and gas recovery.With special surface/interface effects and small-size effects,nanoparticles can be used as foam stabilizers to enhance foam stability,thereby improving foam seepage and oil displacement effects in porous media.In this paper,the decay kinetics and the stabilization mechanisms of nanoparticle-reinforced foams were systematically reviewed.The effects of nanoparticle characteristics,including particle concentration,surface wettability,particle size,and type,and reservoir environment factors,including oil,temperature,pressure,and salinity on the foam stabilization ability were analyzed in detail.The seepage and flooding mechanisms of nanoparticle-reinforced foams were summarized as:improving the plugging properties of foams,enhancing the interaction between foams and crude oil,and synergistically adjusting the wettability of reservoir rocks.Finally,the challenges in the practical application of nanoparticle-reinforced foams were highlighted,and the development direction was proposed.The development of nanoparticle-reinforced foam can open the way toward adaptive and evolutive EOR technology,taking one further step towards the high-efficiency production of the petroleum industry.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
基金Supported by Basic and Forward-Looking Project of the Science and Technology Department of SINOPEC(P22213-4)。
文摘Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displacement mechanisms of shale oil extraction by CO_(2)injection,and the influences of CO_(2)pre-pad on shale mechanical properties.Numerical simulations were performed about influences of CO_(2)pre-pad fracturing and puff-n-huff for energy replenishment on the recovery efficiency.The findings obtained were applied to the field tests of CO_(2)pre-pad fracturing and single well puff-n-huff.The results show that the efficiency of CO_(2)puff-n-huff is affected by micro-and nano-scale effect,kerogen,adsorbed oil and so on,and a longer soaking time in a reasonable range leads to a higher exploitation degree of shale oil.In the"injection+soaking"stage,the exploitation degree of heavy hydrocarbons is enhanced by CO_(2)through its effects of solubility-diffusion and mass-transfer.In the"huff"stage,crude oil in large pores is displaced by CO_(2)to surrounding larger pores or bedding fractures and finally flows to the production well.The injection of CO_(2)pre-pad is conducive to keeping the rock brittle and reducing the fracture breakdown pressure,and the CO_(2)is liable to filter along the bedding surface,thereby creating a more complex fracture.Increasing the volume of CO_(2)pre-pad can improve the energizing effect,and enhance the replenishment of formation energy.Moreover,the oil recovery is more enhanced by CO_(2)huff-n-puff with the lower shale matrix permeability,the lower formation pressure,and the larger heavy hydrocarbon content.The field tests demonstrate a good performance with the pressure maintained well after CO_(2)pre-pad fracturing,the formation energy replenished effectively after CO_(2)huff-n-puff in a single well,and the well productivity improved.
基金The authors would like to acknowledge the Bu Ali Sina University and the Iran National Science Foundation:INSF,under Grant number of 99031559,for their financial supports.
文摘Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.
基金the China National Postdoctoral Program for Innovative Talents(Bx20200386)China Postdoctoral Science Foundation(2021M703586)+1 种基金Key Program of National Natural Science Foundation of China(52130401)National Natural Science Foundation of China(52204064,52104055)for financial support.
文摘Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this study,surface-functionalized cellulose nanocrystals(SF-CNCs)were prepared via hy-drochloric acid hydrolysis and chemical modification,with adaptable nanosize and considerable dispersion stability in low-permeability reservoirs.The SF-CNCs were structurally characterized by FT-IR,Cryo-TEM,which have a diameter of 5-10 nm and a length of 100-200 nm.The SF-CNC dispersions possessed higher stability and stronger salt-tolerance than those of corresponding CNC dispersions,due to the strong hydrophilicity of the sulfonic acid group.It was synergistically used with a non-ionic surfactant(APG1214)to formulate a combined flooding system(0.1 wt%SF-CNC+0.2 wt%APG1214).The combined flooding system exhibits strong emulsification stability,low oil-water interfacial tension of o.03 mN/m,and the ability to alter the wettability for oil-wetting rocks.Furthermore,the combined system was_able to provide an optimum EOR efficiency of 20.2%in low-permeability cores with 30.13×10^(-3)μm^(2).Notably.it can enlarge the sweep volume and increase the displacement efficiency simultaneously.Overall,the newly formulated nanocellulose/surfactant combined system exhibits a remarkable EoR performance in low-permeability reservoirs.
基金Financial support from the Natural Science Foundation of Sichuan Province(2022NSFSC0030)National Natural Science Foundation of China(U1762218)is gratefully acknowledged.
文摘Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.
文摘India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.
基金We gratefully acknowledge financial supports from the Major Program of National Natural Science Foundation of China(Grant No.42090024)the National Natural Science Foundation of China(Grant No.52004322)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QE108).
文摘Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.
基金supported by the National Key R&D Program of China(2018YFA0702400)National Natural Science Foundation of China(5207040347).
文摘A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.
文摘This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta potential measurement,and spontaneous imbibition experiment.The introduction of 5%DTPA-sW solution resulted in a significant decrease in the rock-oil contact angle from 143°to 23,along with a reduction in the Zeta potential from-2.29 mV to-13.06 mV,thereby altering the rock surface charge and shifting its wettability from an oil-wet state to a strongly water-wet state.The presence or absence of potential determining ions(Ca^(2+),Mg^(2+),SO_(4)^(2-))in the solution did not impact the effectiveness of DTPA in changing the rock wettability.However,by tripling the concentration of these ions in the solution,the performance of 5%DTPA-SW solution in changing wettability was impaired.Additionally,spontaneous imbibition tests demonstrated that the 5%DTPA-SW solution led to an increase in oil recovery up to 39.6%.Thus,the optimum mass fraction of DTPA for changing sandstone wettability was determined to be5%.
文摘Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process.
文摘In chemical enhanced oil recovery, surfactants are injected into the reservoir with the intention to lower interfacial tension (IFT) between the water and oil phases, and thereby bring about efficient displacement of oil. However, the adsorption of the surfactants to reservoir rock surfaces leads to the loss and reduction in concentration of the surfactants, which in turn reduces the overall efficiency of the oil recovery process, with attendant financial losses. In this work, the adsorption of Quillaja Saponaria (QS), a novel, natural, non-ionic surfactant, on crushed sandstone reservoir rock is investigated. X-ray diffraction (XRD) study of clean sandstone particles has been undertaken to determine the main components present in the sand particles. The conductivity method was used to measure CMC and the surfactant concentrations in aqueous solutions. Batch adsorption experiments were used to determine the amount of QS adsorbed on rock surface. Equilibrium conditions were reached after almost 5 days. From the results of the study, the Langmuir isotherm model is more suited for predicting the adsorption behaviour of QS on sandstone. The kinetic adsorption of QS obeys the pseudo-second order model. This study is particularly relevant in surfactant selection for chemical EOR processes.
文摘This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for trial in oilfields. The MEOR mechanism and the influence of adsorption, diffusion, metabolism, nutrition, porosity, and permeability are analyzed. The research indicates that different microbes have different efficiencies in EOR and that different culture types play different roles in EOR. The effect of syrup is better than that of glucose, and larger porosity is favorable to the reproduction and growth of microbes, thereby improving the oil recovery. Using crude oil as a single carbon source is more appreciable because of the decrease in cost of oil recovery. At the end of this paper, the development of polymerase chain reaction (PCR) for the future is discussed.
文摘This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected for use in field trials. Behaviors of bacteria activated in the reservoir, oil recovery and water cut, and the viscosity of crude oil produced through huff & puff testing and flooding with molasses-injection tests, have been investigated in situ. CJF-002, which produces biopolysaccharide, is the best among the microbes used for field trials, as it can use molasses as nutrient and produce a small quantity of CO2 and a mass of water-insoluble biopolymer. The metabolic behavior in the reservoir showed that CJF-002 had a good potentiality for MEOR.
基金financial support of the National Nature Science Foundation of China(Grant No.U20B6003)the Natural Science Foundation of Shandong Province,China(ZR2020QE106).
文摘Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique.
基金Supported by the National Natural Science Foundation of China(U22B2075).
文摘Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shale oil are put forward.Through key exploration and research on fluid occurrence,fluid phase change,exploitation mechanism,oil start-up mechanism,flow regime/pattern,exploitation mode and enhanced oil recovery(EOR)of shale reservoirs with different storage spaces,multi-scale occurrence states of shale oil and phase behavior of fluid in nano confined space were provided,the multi-phase,multi-scale flow mode and production mechanism with hydraulic fracture-shale bedding fracture-matrix infiltration as the core was clarified,and a multi-scale flow mathematical model and recoverable reserves evaluation method were preliminarily established.The feasibility of development mode with early energy replenishment and recovery factor of 3o%was discussed.Based on these,the researches of key theories and technologies for effective development of Gulong shale oil are proposed to focus on:(1)in-situ sampling and non-destructive testing of core and fluid;(2)high-temperature,high-pressure,nano-scale laboratory simulation experiment;(3)fusion of multi-scale multi-flow regime numerical simulation technology and large-scale application software;(4)waterless(CO_(2))fracturing technique and the fracturing technique for increasing the vertical fracture height;(5)early energy replenishment to enhance oil recovery;(6)lifecycle technical and economic evaluation.Moreover,a series of exploitation tests should be performed on site as soon as possible to verify the theoretical understanding,optimize the exploitation mode,form supporting technologies,and provide a generalizable development model,thereby supporting and guiding the effective development and production of Gulong shale oil.