This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
快速准确的锁相环技术是保证并网系统安全、可靠并网的关键。针对传统EPLL的固有缺陷,设计了一种改进型EPLL算法,适用于以分布式电源为主的微网并网控制技术。首先,推导出输出电压频率和输入电压幅值之间的耦合关系,使用数学公式进行近...快速准确的锁相环技术是保证并网系统安全、可靠并网的关键。针对传统EPLL的固有缺陷,设计了一种改进型EPLL算法,适用于以分布式电源为主的微网并网控制技术。首先,推导出输出电压频率和输入电压幅值之间的耦合关系,使用数学公式进行近似解耦。其次,搭建误差信号的成本函数,利用梯度下降法设计直流偏移量的估算环路,通过闭环负反馈回路消去输入信号中的直流偏置。然后,在锁相算法的所有估算环路中引入滑动平均值滤波器MAF(moving average filter),以增强控制系统的高频谐波抗干扰能力。最后,在Matlab/Simulink软件中搭建了单相锁相环算法的仿真模型,进行对比分析。仿真结果验证了所提算法的正确性和可行性。展开更多
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
文摘快速准确的锁相环技术是保证并网系统安全、可靠并网的关键。针对传统EPLL的固有缺陷,设计了一种改进型EPLL算法,适用于以分布式电源为主的微网并网控制技术。首先,推导出输出电压频率和输入电压幅值之间的耦合关系,使用数学公式进行近似解耦。其次,搭建误差信号的成本函数,利用梯度下降法设计直流偏移量的估算环路,通过闭环负反馈回路消去输入信号中的直流偏置。然后,在锁相算法的所有估算环路中引入滑动平均值滤波器MAF(moving average filter),以增强控制系统的高频谐波抗干扰能力。最后,在Matlab/Simulink软件中搭建了单相锁相环算法的仿真模型,进行对比分析。仿真结果验证了所提算法的正确性和可行性。