Due to the presence of non-stationarities and discontinuities in the audio signal, segmentation and classification of audio signal is a really challenging task. Automatic music classification and annotation is still c...Due to the presence of non-stationarities and discontinuities in the audio signal, segmentation and classification of audio signal is a really challenging task. Automatic music classification and annotation is still considered as a challenging task due to the difficulty of extracting and selecting the optimal audio features. Hence, this paper proposes an efficient approach for segmentation, feature extraction and classification of audio signals. Enhanced Mel Frequency Cepstral Coefficient (EMFCC)-Enhanced Power Normalized Cepstral Coefficients (EPNCC) based feature extraction is applied for the extraction of features from the audio signal. Then, multi-level classification is done to classify the audio signal as a musical or non-musical signal. The proposed approach achieves better performance in terms of precision, Normalized Mutual Information (NMI), F-score and entropy. The PNN classifier shows high False Rejection Rate (FRR), False Acceptance Rate (FAR), Genuine Acceptance rate (GAR), sensitivity, specificity and accuracy with respect to the number of classes.展开更多
Wake-Up-Word Speech Recognition task (WUW-SR) is a computationally very demand, particularly the stage of feature extraction which is decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the...Wake-Up-Word Speech Recognition task (WUW-SR) is a computationally very demand, particularly the stage of feature extraction which is decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the WUW-SR. The state of the art WUW-SR system is based on three different sets of features: Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding Coefficients (LPC), and Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC). In (front-end of Wake-Up-Word Speech Recognition System Design on FPGA) [1], we presented an experimental FPGA design and implementation of a novel architecture of a real-time spectrogram extraction processor that generates MFCC, LPC, and ENH_MFCC spectrograms simultaneously. In this paper, the details of converting the three sets of spectrograms 1) Mel-Frequency Cepstral Coefficients (MFCC), 2) Linear Predictive Coding Coefficients (LPC), and 3) Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC) to their equivalent features are presented. In the WUW- SR system, the recognizer’s frontend is located at the terminal which is typically connected over a data network to remote back-end recognition (e.g., server). The WUW-SR is shown in Figure 1. The three sets of speech features are extracted at the front-end. These extracted features are then compressed and transmitted to the server via a dedicated channel, where subsequently they are decoded.展开更多
文摘Due to the presence of non-stationarities and discontinuities in the audio signal, segmentation and classification of audio signal is a really challenging task. Automatic music classification and annotation is still considered as a challenging task due to the difficulty of extracting and selecting the optimal audio features. Hence, this paper proposes an efficient approach for segmentation, feature extraction and classification of audio signals. Enhanced Mel Frequency Cepstral Coefficient (EMFCC)-Enhanced Power Normalized Cepstral Coefficients (EPNCC) based feature extraction is applied for the extraction of features from the audio signal. Then, multi-level classification is done to classify the audio signal as a musical or non-musical signal. The proposed approach achieves better performance in terms of precision, Normalized Mutual Information (NMI), F-score and entropy. The PNN classifier shows high False Rejection Rate (FRR), False Acceptance Rate (FAR), Genuine Acceptance rate (GAR), sensitivity, specificity and accuracy with respect to the number of classes.
文摘Wake-Up-Word Speech Recognition task (WUW-SR) is a computationally very demand, particularly the stage of feature extraction which is decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the WUW-SR. The state of the art WUW-SR system is based on three different sets of features: Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding Coefficients (LPC), and Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC). In (front-end of Wake-Up-Word Speech Recognition System Design on FPGA) [1], we presented an experimental FPGA design and implementation of a novel architecture of a real-time spectrogram extraction processor that generates MFCC, LPC, and ENH_MFCC spectrograms simultaneously. In this paper, the details of converting the three sets of spectrograms 1) Mel-Frequency Cepstral Coefficients (MFCC), 2) Linear Predictive Coding Coefficients (LPC), and 3) Enhanced Mel-Frequency Cepstral Coefficients (ENH_MFCC) to their equivalent features are presented. In the WUW- SR system, the recognizer’s frontend is located at the terminal which is typically connected over a data network to remote back-end recognition (e.g., server). The WUW-SR is shown in Figure 1. The three sets of speech features are extracted at the front-end. These extracted features are then compressed and transmitted to the server via a dedicated channel, where subsequently they are decoded.