As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev...As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions.展开更多
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
The radiation pressure signals generated by the bubble oscillation are often utilized to recognize the characteristics of the target objects in many fields.However,these signals are easily contaminated by complex back...The radiation pressure signals generated by the bubble oscillation are often utilized to recognize the characteristics of the target objects in many fields.However,these signals are easily contaminated by complex background noises.In order to accurately extract the effective components of the radiation pressure signal generated by the bubble oscillation,this paper proposes a de-noising procedure for the radiation pressure signal,based on the ensemble empirical mode decomposition(EEMD),the autocorrelation function and the modified wavelet soft-threshold de-noising method.In order to verify the effectiveness of the procedure,the typical radiation pressure signal generated based on the Keller-Miksis model under the acoustic excitation is employed for the subsequent de-noising analysis.The results of the qualitative analysis show that the amplitude and the period of the bubble oscillation can be clearly observed in the time-domain diagram of the de-noised signal based on the EEMD.In the quantitative analysis,the de-noised signal based on the EEMD has better performance with higher signal-to-noise ratio(SNR),smaller root-mean-square error,and larger correlation coefficient than that based on the wavelet transform(WT)and the empirical mode decomposition(EMD).Furthermore,with the increase of the complexity of the radiation pressure signal(e.g.,the increase of the dimensionless pressure amplitude of the acoustic wave and the decrease of the SNR of the input signal),the above three evaluation indexes of the de-noised signal based on the EEMD are all better than those based on the other two methods.When the signal is more complex,the de-noising capabilities of the WT,the EMD are greatly reduced,but the EEMD can still maintain the good de-noising capability,which shows the superiority of the signal de-noising procedure proposed in the present paper.展开更多
Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stati...Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system.展开更多
In this paper a modified ensemble empirical mode decomposition(EEMD) method is presented, which is named winning-EEMD(W-EEMD). Two aspects of the EEMD, the amplitude of added white noise and the number of intrinsic mo...In this paper a modified ensemble empirical mode decomposition(EEMD) method is presented, which is named winning-EEMD(W-EEMD). Two aspects of the EEMD, the amplitude of added white noise and the number of intrinsic mode functions(IMFs), are discussed in this method. The signal-to-noise ratio(SNR) is used to measure the amplitude of added noise and the winning number of IMFs(which results most frequency) is used to unify the number of IMFs. By this method, the calculation speed of decomposition is improved, and the relative error between original data and sum of decompositions is reduced. In addition, the feasibility and effectiveness of this method are proved by the example of the oceanic internal solitary wave.展开更多
基金The Project Supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2020SP007the National Natural Science Foundation of China under contract Nos 42192562 and 62072249.
文摘As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51976056,U1965106).
文摘The radiation pressure signals generated by the bubble oscillation are often utilized to recognize the characteristics of the target objects in many fields.However,these signals are easily contaminated by complex background noises.In order to accurately extract the effective components of the radiation pressure signal generated by the bubble oscillation,this paper proposes a de-noising procedure for the radiation pressure signal,based on the ensemble empirical mode decomposition(EEMD),the autocorrelation function and the modified wavelet soft-threshold de-noising method.In order to verify the effectiveness of the procedure,the typical radiation pressure signal generated based on the Keller-Miksis model under the acoustic excitation is employed for the subsequent de-noising analysis.The results of the qualitative analysis show that the amplitude and the period of the bubble oscillation can be clearly observed in the time-domain diagram of the de-noised signal based on the EEMD.In the quantitative analysis,the de-noised signal based on the EEMD has better performance with higher signal-to-noise ratio(SNR),smaller root-mean-square error,and larger correlation coefficient than that based on the wavelet transform(WT)and the empirical mode decomposition(EMD).Furthermore,with the increase of the complexity of the radiation pressure signal(e.g.,the increase of the dimensionless pressure amplitude of the acoustic wave and the decrease of the SNR of the input signal),the above three evaluation indexes of the de-noised signal based on the EEMD are all better than those based on the other two methods.When the signal is more complex,the de-noising capabilities of the WT,the EMD are greatly reduced,but the EEMD can still maintain the good de-noising capability,which shows the superiority of the signal de-noising procedure proposed in the present paper.
文摘Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system.
基金the National Natural Science Foundation of China(Nos.61072145,11401031 and 61471406)the Beijing Excellent Talent Training Project(No.2013D005007000003)
文摘In this paper a modified ensemble empirical mode decomposition(EEMD) method is presented, which is named winning-EEMD(W-EEMD). Two aspects of the EEMD, the amplitude of added white noise and the number of intrinsic mode functions(IMFs), are discussed in this method. The signal-to-noise ratio(SNR) is used to measure the amplitude of added noise and the winning number of IMFs(which results most frequency) is used to unify the number of IMFs. By this method, the calculation speed of decomposition is improved, and the relative error between original data and sum of decompositions is reduced. In addition, the feasibility and effectiveness of this method are proved by the example of the oceanic internal solitary wave.