期刊文献+
共找到1,209篇文章
< 1 2 61 >
每页显示 20 50 100
Dynamic prediction of landslide life expectancy using ensemble system incorporating classical prediction models and machine learning
1
作者 Lei-Lei Liu Hao-Dong Yin +2 位作者 Ting Xiao Lei Huang Yung-Ming Cheng 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期202-219,共18页
With the development of landslide monitoring system,many attempts have been made to predict landslide failure-time utilizing monitoring data of displacements.Classical models(e.g.,Verhulst,GM(1,1),and Saito models)tha... With the development of landslide monitoring system,many attempts have been made to predict landslide failure-time utilizing monitoring data of displacements.Classical models(e.g.,Verhulst,GM(1,1),and Saito models)that consider the characteristics of landslide displacement to determine the failuretime have been investigated extensively.In practice,monitoring is continuously implemented with monitoring data-set updated,meaning that the predicted landslide life expectancy(i.e.,the lag between the predicted failure-time and time node at each instant of conducting the prediction)should be re-evaluated with time.This manner is termed“dynamic prediction”.However,the performances of the classical models have not been discussed in the context of the dynamic prediction yet.In this study,such performances are investigated firstly,and disadvantages of the classical models are then reported,incorporating the monitoring data from four real landslides.Subsequently,a more qualified ensemble model is proposed,where the individual classical models are integrated by machine learning(ML)-based meta-model.To evaluate the quality of the models under the dynamic prediction,a novel indicator termed“discredit index(b)”is proposed,and a higher value of b indicates lower prediction quality.It is found that Verhulst and Saito models would produce predicted results with significantly higher b,while GM(1,1)model would indicate results with the highest mean absolute error.Meanwhile,the ensemble models are found to be more accurate and qualified than the classical models.Here,the performance of decision tree regression-based ensemble model is the best among the various ML-based ensemble models. 展开更多
关键词 Dynamic prediction Landslide life expectancy Machine learning ensemble system
原文传递
Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks 被引量:1
2
作者 Asad Raza Shahzad Memon +1 位作者 Muhammad Ali Nizamani Mahmood Hussain Shah 《Intelligent Automation & Soft Computing》 2024年第3期545-566,共22页
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl... Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments. 展开更多
关键词 Industrial internet of things smart industrial environment cyber-attacks convolutional neural network ensemble learning
下载PDF
Detection and defending the XSS attack using novel hybrid stacking ensemble learning-based DNN approach 被引量:1
3
作者 Muralitharan Krishnan Yongdo Lim +1 位作者 Seethalakshmi Perumal Gayathri Palanisamy 《Digital Communications and Networks》 SCIE CSCD 2024年第3期716-727,共12页
Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while mod... Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment. 展开更多
关键词 Machine learning Deep neural networks Classification Stacking ensemble XSS attack URL encoding JScript/JavaScript Web security
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
4
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
A New Speed Limit Recognition Methodology Based on Ensemble Learning:Hardware Validation 被引量:1
5
作者 Mohamed Karray Nesrine Triki Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第7期119-138,共20页
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn... Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology. 展开更多
关键词 Driving automation advanced driver assistance systems(ADAS) traffic sign recognition(TSR) artificial intelligence ensemble learning belief functions voting method
下载PDF
Lightweight Network Ensemble Architecture for Environmental Perception on the Autonomous System
6
作者 Yingpeng Dai Junzheng Wang +2 位作者 Jing Li Lingfeng Meng Songfeng Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期135-156,共22页
It is important for the autonomous system to understand environmental information.For the autonomous system,it is desirable to have a strong generalization ability to deal with different complex environmental informat... It is important for the autonomous system to understand environmental information.For the autonomous system,it is desirable to have a strong generalization ability to deal with different complex environmental information,as well as have high accuracy and quick inference speed.Network ensemble architecture is a good choice to improve network performance.However,it is unsuitable for real-time applications on the autonomous system.To tackle this problem,a new neural network ensemble named partial-shared ensemble network(PSENet)is presented.PSENet changes network ensemble architecture from parallel architecture to scatter architecture and merges multiple component networks together to accelerate the inference speed.To make component networks independent of each other,a training method is designed to train the network ensemble architecture.Experiments on Camvid and CIFAR-10 reveal that PSENet achieves quick inference speed while maintaining the ability of ensemble learning.In the real world,PSENet is deployed on the unmanned system and deals with vision tasks such as semantic segmentation and environmental prediction in different fields. 展开更多
关键词 Neural network ensemble real-time application CLASSIFICATION semantic segmentation
下载PDF
GRU-based Buzzer Ensemble for Abnormal Detection in Industrial Control Systems
7
作者 Hyo-Seok Kim Chang-Gyoon Lim +1 位作者 Sang-Joon Lee Yong-Min Kim 《Computers, Materials & Continua》 SCIE EI 2023年第1期1749-1763,共15页
Recently,Industrial Control Systems(ICSs)have been changing from a closed environment to an open environment because of the expansion of digital transformation,smart factories,and Industrial Internet of Things(IIoT).S... Recently,Industrial Control Systems(ICSs)have been changing from a closed environment to an open environment because of the expansion of digital transformation,smart factories,and Industrial Internet of Things(IIoT).Since security accidents that occur in ICSs can cause national confusion and human casualties,research on detecting abnormalities by using normal operation data learning is being actively conducted.The single technique proposed by existing studies does not detect abnormalities well or provide satisfactory results.In this paper,we propose a GRU-based Buzzer Ensemble for AbnormalDetection(GBE-AD)model for detecting anomalies in industrial control systems to ensure rapid response and process availability.The newly proposed ensemble model of the buzzer method resolves False Negatives(FNs)by complementing the limited range that can be detected in a single model because of the internal models composing GBE-AD.Because the internal models remain suppressed for False Positives(FPs),GBE-AD provides better generalization.In addition,we generated mean prediction error data in GBE-AD and inferred abnormal processes using soft and hard clustering.We confirmed that the detection model’s Time-series Aware Precision(TaP)suppressed FPs at 97.67%.The final performance was 94.04%in an experiment using anHIL-basedAugmented ICS(HAI)Security Dataset(ver.21.03)among public datasets. 展开更多
关键词 Industrial control system abnormal detection ensemble learning HAI dataset
下载PDF
A Novel Ensemble Learning System for Cyberattack Classification
8
作者 óscar Mogollón-Gutiérrez JoséCarlos Sancho Nunez +1 位作者 Marávila Vegas Andrés Caro Lindo 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1691-1709,共19页
Nowadays,IT systems rely mainly on artificial intelligence(AI)algorithms to process data.AI is generally used to extract knowledge from stored information and,depending on the nature of data,it may be necessary to app... Nowadays,IT systems rely mainly on artificial intelligence(AI)algorithms to process data.AI is generally used to extract knowledge from stored information and,depending on the nature of data,it may be necessary to apply different AI algorithms.In this article,a novel perspective on the use of AI to ensure the cybersecurity through the study of network traffic is presented.This is done through the construction of a two-stage cyberattack classification ensemble model addressing class imbalance following a one-vs-rest(OvR)approach.With the growing trend of cyberattacks,it is essential to implement techniques that ensure legitimate access to information.To address this issue,this work proposes a network traffic classification system for different categories based on several AI techniques.In the first task,binary models are generated to clearly differentiate each type of traffic from the rest.With binary models generated,an ensemble model is developed in two phases,which allows the separation of legitimate and illegitimate traffic(phase 1)while also identifying the type of illegitimate traffic(phase 2).In this way,the proposed system allows a complete multiclass classification of network traffic.The estimation of global performance is done using a modern dataset(UNSW-NB15),evaluated using two approaches and compared with other state-of-art works.Our proposal,based on the construction of a two-step model,reaches an F1 of 0.912 for the first level of binary classification and 0.7754 for the multiclass classification.These results show that the proposed system outperforms other state-of-the-art approaches(+0.75%and+3.54%for binary and multiclass classification,respectively)in terms of F1,as demon-strated through comparison together with other relevant classification metrics. 展开更多
关键词 Intrusion detection ensemble learning two-phase model UNSW-NB15 CYBERSECURITY
下载PDF
Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning Model for Intrusion Detection System
9
作者 Mahmoud Ragab Sultanah M.Alshammari Abdullah S.Al-Malaise Al-Ghamdi 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2497-2512,共16页
The Internet of Things(IoT)system has confronted dramatic growth in high dimensionality and data traffic.The system named intrusion detection systems(IDS)is broadly utilized for the enhancement of security posture in ... The Internet of Things(IoT)system has confronted dramatic growth in high dimensionality and data traffic.The system named intrusion detection systems(IDS)is broadly utilized for the enhancement of security posture in an IT infrastructure.An IDS is a practical and suitable method for assuring network security and identifying attacks by protecting it from intrusive hackers.Nowadays,machine learning(ML)-related techniques were used for detecting intrusion in IoTs IDSs.But,the IoT IDS mechanism faces significant challenges because of physical and functional diversity.Such IoT features use every attribute and feature for IDS self-protection unrealistic and difficult.This study develops a Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning(MM-WMVEDL)model for IDS.The proposed MM-WMVEDL technique aims to discriminate distinct kinds of attacks in the IoT environment.To attain this,the presented MM-WMVEDL technique implements min-max normalization to scale the input dataset.For feature selection purposes,the MM-WMVEDL technique exploits the Harris hawk optimization-based elite fractional derivative mutation(HHO-EFDM)technique.In the presented MM-WMVEDL technique,a Bi-directional long short-term memory(BiLSTM),extreme learning machine(ELM)and an ensemble of gated recurrent unit(GRU)models take place.A wide range of simulation analyses was performed on CICIDS-2017 dataset to exhibit the promising performance of the MM-WMVEDL technique.The comparison study pointed out the supremacy of the MM-WMVEDL method over other recent methods with accuracy of 99.67%. 展开更多
关键词 Internet of Things intrusion detection system machine learning ensemble deep learning metaheuristics
下载PDF
Advance IoT Intelligent Healthcare System for Lung Disease Classification Using Ensemble Techniques
10
作者 J.Prabakaran P.Selvaraj 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2141-2157,共17页
In healthcare systems,the Internet of Things(IoT)innovation and development approached new ways to evaluate patient data.A cloud-based platform tends to process data generated by IoT medical devices instead of high st... In healthcare systems,the Internet of Things(IoT)innovation and development approached new ways to evaluate patient data.A cloud-based platform tends to process data generated by IoT medical devices instead of high storage,and computational hardware.In this paper,an intelligent healthcare system has been proposed for the prediction and severity analysis of lung disease from chest computer tomography(CT)images of patients with pneumonia,Covid-19,tuberculosis(TB),and cancer.Firstly,the CT images are captured and transmitted to the fog node through IoT devices.In the fog node,the image gets modified into a convenient and efficient format for further processing.advanced encryption Standard(AES)algorithm serves a substantial role in IoT and fog nodes for preventing data from being accessed by other operating systems.Finally,the preprocessed image can be classified automatically in the cloud by using various transfer and ensemble learning models.Herein different pre-trained deep learning architectures(Inception-ResNet-v2,VGG-19,ResNet-50)used transfer learning is adopted for feature extraction.The softmax of heterogeneous base classifiers assists to make individual predictions.As a meta-classifier,the ensemble approach is employed to obtain final optimal results.Disease predicted image is consigned to the recurrent neural network with long short-term memory(RNN-LSTM)for severity analysis,and the patient is directed to seek therapy based on the outcome.The proposed method achieved 98.6%accuracy,0.978 precision,0.982 recalls,and 0.974 F1-score on five class classifications.The experimental findings reveal that the proposed framework assists medical experts with lung disease screening and provides a valuable second perspective. 展开更多
关键词 Intelligent health care cloud computing fog computing ensemble learning RNN-LSTM
下载PDF
Horizontal Voting Ensemble Based Predictive Modeling System for Colon Cancer
11
作者 Ushaa Eswaran S.Anand 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1917-1928,共12页
Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce ... Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce the mortality rate.In this work,a Predictive Modeling System(PMS)is developed for the classification of colon cancer using the Horizontal Voting Ensemble(HVE)method.Identifying different patterns inmicroscopic images is essential to an effective classification system.A twelve-layer deep learning architecture has been developed to extract these patterns.The developedHVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture.Ten thousand(10000)microscopic images are taken to test the classification performance of the proposed PMS with the HVE method.The microscopic images obtained from the colon tissues are classified intoACAor benign by the proposed PMS.Results prove that the proposed PMS has∼8%performance improvement over the architecture without using the HVE method.The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2%of sensitivity and 99.4%of specificity.The overall accuracy of the proposed PMS is 99.3%,and without using the HVE method,it is only 91.3%. 展开更多
关键词 Colon cancer microscopic images medical image processing ensemble approach computer aided diagnosis texture analysis
下载PDF
IOT Based Smart Parking System Using Ensemble Learning
12
作者 Walaa H.Elashmawi Ahmad Akram +4 位作者 Mohammed Yasser Menna Hisham Manar Mohammed Noha Ihab Ahmed Ali 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3637-3656,共20页
Parking space is usually very limited in major cities,especially Cairo,leading to traffic congestion,air pollution,and driver frustration.Existing car parking systems tend to tackle parking issues in a non-digitized m... Parking space is usually very limited in major cities,especially Cairo,leading to traffic congestion,air pollution,and driver frustration.Existing car parking systems tend to tackle parking issues in a non-digitized manner.These systems require the drivers to search for an empty parking space with no guaran-tee of finding any wasting time,resources,and causing unnecessary congestion.To address these issues,this paper proposes a digitized parking system with a proof-of-concept implementation that combines multiple technological concepts into one solution with the advantages of using IoT for real-time tracking of park-ing availability.User authentication and automated payments are handled using a quick response(QR)code on entry and exit.Some experiments were done on real data collected for six different locations in Cairo via a live popular times library.Several machine learning models were investigated in order to estimate the occu-pancy rate of certain places.Moreover,a clear analysis of the differences in per-formance is illustrated with the final model deployed being XGboost.It has achieved the most efficient results with a R^(2) score of 85.7%. 展开更多
关键词 IOT XGBoost linear regression random forest ensemble learning isolation forest
下载PDF
Data and Ensemble Machine Learning Fusion Based Intelligent Software Defect Prediction System
13
作者 Sagheer Abbas Shabib Aftab +3 位作者 Muhammad Adnan Khan Taher MGhazal Hussam Al Hamadi Chan Yeob Yeun 《Computers, Materials & Continua》 SCIE EI 2023年第6期6083-6100,共18页
The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to ... The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to con-centrate on problematic modules rather than all the modules.This approach can enhance the quality of the final product while lowering development costs.Identifying defective modules early on can allow for early corrections and ensure the timely delivery of a high-quality product that satisfies customers and instills greater confidence in the development team.This process is known as software defect prediction,and it can improve end-product quality while reducing the cost of testing and maintenance.This study proposes a software defect prediction system that utilizes data fusion,feature selection,and ensemble machine learning fusion techniques.A novel filter-based metric selection technique is proposed in the framework to select the optimum features.A three-step nested approach is presented for predicting defective modules to achieve high accuracy.In the first step,three supervised machine learning techniques,including Decision Tree,Support Vector Machines,and Naïve Bayes,are used to detect faulty modules.The second step involves integrating the predictive accuracy of these classification techniques through three ensemble machine-learning methods:Bagging,Voting,and Stacking.Finally,in the third step,a fuzzy logic technique is employed to integrate the predictive accuracy of the ensemble machine learning techniques.The experiments are performed on a fused software defect dataset to ensure that the developed fused ensemble model can perform effectively on diverse datasets.Five NASA datasets are integrated to create the fused dataset:MW1,PC1,PC3,PC4,and CM1.According to the results,the proposed system exhibited superior performance to other advanced techniques for predicting software defects,achieving a remarkable accuracy rate of 92.08%. 展开更多
关键词 ensemble machine learning fusion software defect prediction fuzzy logic
下载PDF
基于Local Cascade Ensemble方法的胎儿健康自动分类
14
作者 黄梅佳 李宗辉 郑博伟 《信息技术与信息化》 2024年第4期122-125,共4页
为更好地自动评估胎儿宫内状态,提出一种基于local cascade ensemble(LCE)方法的胎儿健康状态分类模型。选用UCI数据集,使用ADASYN方法对不平衡数据集进行填充平衡,接着结合随机森林算法对数据特征进行选择,最后使用LCE方法对胎儿状态... 为更好地自动评估胎儿宫内状态,提出一种基于local cascade ensemble(LCE)方法的胎儿健康状态分类模型。选用UCI数据集,使用ADASYN方法对不平衡数据集进行填充平衡,接着结合随机森林算法对数据特征进行选择,最后使用LCE方法对胎儿状态进行自动分类。实验结果表明,所提出模型使用的方法平均准确率、精确率、召回率和F1分数分别达到了0.9554、0.9054、0.9557和0.9290,对比传统的机器学习算法能得到更好的分类效果,有效降低了误判率。 展开更多
关键词 机器学习 胎儿监护 自动分类 Local Cascade ensemble
下载PDF
Securing Cloud-Encrypted Data:Detecting Ransomware-as-a-Service(RaaS)Attacks through Deep Learning Ensemble
15
作者 Amardeep Singh Hamad Ali Abosaq +5 位作者 Saad Arif Zohaib Mushtaq Muhammad Irfan Ghulam Abbas Arshad Ali Alanoud Al Mazroa 《Computers, Materials & Continua》 SCIE EI 2024年第4期857-873,共17页
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and ... Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and everpresent threat is Ransomware-as-a-Service(RaaS)assaults,which enable even individuals with minimal technical knowledge to conduct ransomware operations.This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models.For this purpose,the network intrusion detection dataset“UNSWNB15”from the Intelligent Security Group of the University of New South Wales,Australia is analyzed.In the initial phase,the rectified linear unit-,scaled exponential linear unit-,and exponential linear unit-based three separate Multi-Layer Perceptron(MLP)models are developed.Later,using the combined predictive power of these three MLPs,the RansoDetect Fusion ensemble model is introduced in the suggested methodology.The proposed ensemble technique outperforms previous studieswith impressive performance metrics results,including 98.79%accuracy and recall,98.85%precision,and 98.80%F1-score.The empirical results of this study validate the ensemble model’s ability to improve cybersecurity defenses by showing that it outperforms individual MLPmodels.In expanding the field of cybersecurity strategy,this research highlights the significance of combined deep learning models in strengthening intrusion detection systems against sophisticated cyber threats. 展开更多
关键词 Cloud encryption RAAS ensemble threat detection deep learning CYBERSECURITY
下载PDF
Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias
16
作者 Batyrkhan Omarov Meirzhan Baikuvekov +3 位作者 Daniyar Sultan Nurzhan Mukazhanov Madina Suleimenova Maigul Zhekambayeva 《Computers, Materials & Continua》 SCIE EI 2024年第7期341-359,共19页
This research introduces an innovative ensemble approach,combining Deep Residual Networks(ResNets)and Bidirectional Gated Recurrent Units(BiGRU),augmented with an Attention Mechanism,for the classification of heart ar... This research introduces an innovative ensemble approach,combining Deep Residual Networks(ResNets)and Bidirectional Gated Recurrent Units(BiGRU),augmented with an Attention Mechanism,for the classification of heart arrhythmias.The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency.The model leverages the deep hierarchical feature extraction capabilities of ResNets,which are adept at identifying intricate patterns within electrocardiogram(ECG)data,while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals.The integration of an Attention Mechanism refines the model’s focus on critical segments of ECG data,ensuring a nuanced analysis that highlights the most informative features for arrhythmia classification.Evaluated on a comprehensive dataset of 12-lead ECG recordings,our ensemble model demonstrates superior performance in distinguishing between various types of arrhythmias,with an accuracy of 98.4%,a precision of 98.1%,a recall of 98%,and an F-score of 98%.This novel combination of convolutional and recurrent neural networks,supplemented by attention-driven mechanisms,advances automated ECG analysis,contributing significantly to healthcare’s machine learning applications and presenting a step forward in developing non-invasive,efficient,and reliable tools for early diagnosis and management of heart diseases. 展开更多
关键词 CNN BiGRU ensemble deep learning ECG ARRHYTHMIA heart disease
下载PDF
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region
17
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors Machine learning models Hybrid ensemble learning Geospatial techniques Himalayan region
下载PDF
Machine learning ensemble model prediction of northward shift in potato cyst nematodes(Globodera rostochiensis and G.pallida)distribution under climate change conditions
18
作者 Yitong He Guanjin Wang +3 位作者 Yonglin Ren Shan Gao Dong Chu Simon J.McKirdy 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3576-3591,共16页
Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosec... Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control. 展开更多
关键词 invasive species distribution future climates homogeneous climate predictors single-algorithm ensembles multi-algorithm ensembles artificial neural network
下载PDF
Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection
19
作者 Muhammad Armghan Latif Zohaib Mushtaq +6 位作者 Saad Arif Sara Rehman Muhammad Farrukh Qureshi Nagwan Abdel Samee Maali Alabdulhafith Yeong Hyeon Gu Mohammed A.Al-masni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4225-4241,共17页
Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland.Accurate and timely diagnosis of these d... Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland.Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care.This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques.Sequential forward feature selection,sequential backward feature elimination,and bidirectional feature elimination are investigated in this study.In ensemble learning,random forest,adaptive boosting,and bagging classifiers are employed.The effectiveness of these techniques is evaluated using two different datasets obtained from the University of California Irvine-Machine Learning Repository,both of which undergo preprocessing steps,including outlier removal,addressing missing data,data cleansing,and feature reduction.Extensive experimentation demonstrates the remarkable success of proposed ensemble stacking and bidirectional feature elimination achieving 100%and 99.86%accuracy in identifying hyperthyroidism and hypothyroidism,respectively.Beyond enhancing detection accuracy,the ensemble stacking model also demonstrated a streamlined computational complexity which is pivotal for practical medical applications.It significantly outperformed existing studies with similar objectives underscoring the viability and effectiveness of the proposed scheme.This research offers an innovative perspective and sets the platform for improved thyroid disorder diagnosis with broader implications for healthcare and patient well-being. 展开更多
关键词 ensemble learning random forests BOOSTING dimensionality reduction machine learning smart healthcare computer aided diagnosis
下载PDF
A redundant subspace weighting procedure for clock ensemble
20
作者 徐海 陈煜 +1 位作者 刘默驰 王玉琢 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期435-442,共8页
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble... A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases. 展开更多
关键词 weighting method redundant subspace clock ensemble time scale
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部