Most entity ranking research aims to retrieve a ranked list of entities from a Web corpus given a user query. The rank order of entities is determined by the relevance between the query and contexts of entities. Howev...Most entity ranking research aims to retrieve a ranked list of entities from a Web corpus given a user query. The rank order of entities is determined by the relevance between the query and contexts of entities. However, entities can be ranked directly based on their relative importance in a document collection, independent of any queries. In this paper, we introduce an entity ranking algorithm named NERank+. Given a document collection, NERank+ first constructs a graph model called Topical Tripartite Graph, consisting of document, topic and entity nodes. We design separate ranking functions to compute the prior ranks of entities and topics, respectively. A meta-path constrained random walk algorithm is proposed to propagate prior entity and topic ranks based on the graph model. We evaluate NERank+ over real-life datasets and compare it with baselines. Experimental results illustrate the effectiveness of our approach.展开更多
文摘Most entity ranking research aims to retrieve a ranked list of entities from a Web corpus given a user query. The rank order of entities is determined by the relevance between the query and contexts of entities. However, entities can be ranked directly based on their relative importance in a document collection, independent of any queries. In this paper, we introduce an entity ranking algorithm named NERank+. Given a document collection, NERank+ first constructs a graph model called Topical Tripartite Graph, consisting of document, topic and entity nodes. We design separate ranking functions to compute the prior ranks of entities and topics, respectively. A meta-path constrained random walk algorithm is proposed to propagate prior entity and topic ranks based on the graph model. We evaluate NERank+ over real-life datasets and compare it with baselines. Experimental results illustrate the effectiveness of our approach.