Presents a study which examined a cell entropy inequality for a class of local relaxation approximation relaxing scheme for scalar conservation laws. Way to obtain the scheme; Use of numerical entropy condition for th...Presents a study which examined a cell entropy inequality for a class of local relaxation approximation relaxing scheme for scalar conservation laws. Way to obtain the scheme; Use of numerical entropy condition for the approximation.展开更多
Presents a study on the cell entropy inequality for two classes of fully discrete relaxing schemes approximating scalar conservation laws. Main advantage of the schemes; Review of the construction of the relaxing syst...Presents a study on the cell entropy inequality for two classes of fully discrete relaxing schemes approximating scalar conservation laws. Main advantage of the schemes; Review of the construction of the relaxing system with a stiff source term; Conclusions.展开更多
The nonlinear constitutive equations and field equations of unsaturated soils were constructed on the basis of mixture theory. The soils were treated as the mixture composed of three constituents. First, from the rese...The nonlinear constitutive equations and field equations of unsaturated soils were constructed on the basis of mixture theory. The soils were treated as the mixture composed of three constituents. First, from the researches of soil mechanics, some basic assumptions about the unsaturated soil mixture were made, and the entropy inequality of unsaturated soil mixture was derived. Then, with the common method usually used to deal with the constitutive problems in mixture theory, the nonlinear constitutive equations were obtained. Finally, putting the constitutive equations of constituents into the balance equations of momentum, the nonlinear field equations of constituents were set up. The balance equation of energy of unsaturated soil was also given, and thus the complete equations for solving the thermodynamic process of unsaturated soil was formed.展开更多
In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^...In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.展开更多
The existing fundamental laws of thermodynamics for micropolar continuum field theories are restudied and their incompleteness is pointed out. New first and second fundamental laws for thermostatics and thermodynamics...The existing fundamental laws of thermodynamics for micropolar continuum field theories are restudied and their incompleteness is pointed out. New first and second fundamental laws for thermostatics and thermodynamics for micropolar continua are postulated. From them all equilibrium equations and the entropy inequality of thermostatics as well as all balance equations and the entropy rate inequalities are naturally and simultaneously deduced. The comparisons between the new results presented here and the corresponding results demonstrated in existing monographs and textbooks concerning micropolar continuum mechanics are made at any time. It should be emphasized to note that, the problem of why the local balance equation of energy and the local entropy inequality could not be obtained from the existing fundamental laws of thermodynamics for micropolar continua, is believed to be clarified.展开更多
For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results...For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results by taking a suitable entropy-flux pair (Journal of Differential Equations, 1988, 71(1): 93-122). The solutions of the initial-boundary value problem for the system are constructively obtained, in which initial-boundary data are in piecewise constant states. The delta-shock waves appear in their solutions.展开更多
The aim of this paper is to discuss some degenerate hyperbolic equation ut+φ(u)x=0.where φ∈C^1(R/{0})∩C^2(R/{0})is a nondecreasing function in R,where R=(-∞,+∞).Some entropy inequalities are obtained...The aim of this paper is to discuss some degenerate hyperbolic equation ut+φ(u)x=0.where φ∈C^1(R/{0})∩C^2(R/{0})is a nondecreasing function in R,where R=(-∞,+∞).Some entropy inequalities are obtained and can be applied to study the existence of local BV solutions of the above equation with local finite measures as initial conditions.展开更多
In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamicall...In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.展开更多
A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship t...A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.展开更多
The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are ...The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper.展开更多
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L1-error estimate for a class of finite volume schemes allowing for the approxima...Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L1-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L1 norm is of order h1/4 at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theory which was originally developed in the Euclidian setting. We extend the arguments to curved manifolds, by taking into account the effects to the geometry and overcoming several new technical difficulties.展开更多
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(e,θ) - qθ+eln^α(1+e). For the heat flux q ~ -(1+θ^m) △θwe show the existence of a...We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(e,θ) - qθ+eln^α(1+e). For the heat flux q ~ -(1+θ^m) △θwe show the existence of a weak solution provided α〉max{1,1/m}, m 〉0. This improves the recent result from [1].展开更多
文摘Presents a study which examined a cell entropy inequality for a class of local relaxation approximation relaxing scheme for scalar conservation laws. Way to obtain the scheme; Use of numerical entropy condition for the approximation.
基金National Natural Science Foundation (No.19901031), Special Funds for Major State Basic Research Projects of China, and the Found
文摘Presents a study on the cell entropy inequality for two classes of fully discrete relaxing schemes approximating scalar conservation laws. Main advantage of the schemes; Review of the construction of the relaxing system with a stiff source term; Conclusions.
文摘The nonlinear constitutive equations and field equations of unsaturated soils were constructed on the basis of mixture theory. The soils were treated as the mixture composed of three constituents. First, from the researches of soil mechanics, some basic assumptions about the unsaturated soil mixture were made, and the entropy inequality of unsaturated soil mixture was derived. Then, with the common method usually used to deal with the constitutive problems in mixture theory, the nonlinear constitutive equations were obtained. Finally, putting the constitutive equations of constituents into the balance equations of momentum, the nonlinear field equations of constituents were set up. The balance equation of energy of unsaturated soil was also given, and thus the complete equations for solving the thermodynamic process of unsaturated soil was formed.
基金S.Geng's research was supported in part by the National Natural Science Foundation of China(12071397)Excellent Youth Project of Hunan Education Department(21B0165)+1 种基金F.Huang's research was supported in part by the National Key R&D Program of China 2021YFA1000800the National Natural Science Foundation of China(12288201).
文摘In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472041 and 10072024)the Science Research Foundation of Liaoning Province (No.990111001)
文摘The existing fundamental laws of thermodynamics for micropolar continuum field theories are restudied and their incompleteness is pointed out. New first and second fundamental laws for thermostatics and thermodynamics for micropolar continua are postulated. From them all equilibrium equations and the entropy inequality of thermostatics as well as all balance equations and the entropy rate inequalities are naturally and simultaneously deduced. The comparisons between the new results presented here and the corresponding results demonstrated in existing monographs and textbooks concerning micropolar continuum mechanics are made at any time. It should be emphasized to note that, the problem of why the local balance equation of energy and the local entropy inequality could not be obtained from the existing fundamental laws of thermodynamics for micropolar continua, is believed to be clarified.
基金Project supported by the National Natural Science Foundation of China (Grant No.10671120)
文摘For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results by taking a suitable entropy-flux pair (Journal of Differential Equations, 1988, 71(1): 93-122). The solutions of the initial-boundary value problem for the system are constructively obtained, in which initial-boundary data are in piecewise constant states. The delta-shock waves appear in their solutions.
基金Project supported by the Teaching and Research Award Found for 0utstanding Young Teachers in Higher Education Institutions of M0E, China (No.[2000]26) and supported by the National Natural Science Foundation of China (No.1001015).
文摘The aim of this paper is to discuss some degenerate hyperbolic equation ut+φ(u)x=0.where φ∈C^1(R/{0})∩C^2(R/{0})is a nondecreasing function in R,where R=(-∞,+∞).Some entropy inequalities are obtained and can be applied to study the existence of local BV solutions of the above equation with local finite measures as initial conditions.
文摘In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.
基金the National Natural Science Foundation of China (Grant No. 10571139)
文摘A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.
基金National Natural Science Foundation of ChinaLaboratory of Computational Physics of Beijing IAPCM
文摘Presents a central relaxing scheme for scalar conservation laws. Details on the preliminary equations; Properties of the relaxed schemes; Conclusions.
文摘The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper.
基金supported by the A. N. R. (Agence Nationale de la Recherche) through the grant 06-2-134423 entitled "Mathematical Methods in General Relativity" (MATH-GR)by the Centre National de la Recherche Scientifique (CNRS)+1 种基金supported by the grant 311759/2006-8 from the National Counsel of Technological Scientific Development (CNPq)by an internation project between Brazil and France
文摘Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L1-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L1 norm is of order h1/4 at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theory which was originally developed in the Euclidian setting. We extend the arguments to curved manifolds, by taking into account the effects to the geometry and overcoming several new technical difficulties.
基金Acknowledgments The work of M.P. is a part of the research project MSM 0021620839 financed by MSMT and partly supported by the grant of the Czech Science Foundation No. 201/08/0315 and by the project LC06052 (Jindfich Necas Center for Mathematical Modeling).
文摘We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(e,θ) - qθ+eln^α(1+e). For the heat flux q ~ -(1+θ^m) △θwe show the existence of a weak solution provided α〉max{1,1/m}, m 〉0. This improves the recent result from [1].