In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum ris...In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum risk equivariant estimator under symmetric entropy loss is given, and the minimaxity of the minimum risk equivariant estimator is proved. The results with regard to admissibility and inadmissibility of a class of linear estimators of the form cT(X) + d are given, where T(X) Gamma(v, θ).展开更多
Let X_1,...,Xn. be a random sample from multivariate normal distribution Np(μ,∑), where μ∈Rp and E is a positive definite matrix, both p and ∑ being unknown. It is shown that for the entropy loss L(δ, |∑| ^(- 1...Let X_1,...,Xn. be a random sample from multivariate normal distribution Np(μ,∑), where μ∈Rp and E is a positive definite matrix, both p and ∑ being unknown. It is shown that for the entropy loss L(δ, |∑| ^(- 1) )=δ/ |∑| ^(- 1) -log(δ/ |∑ |~ (- 1) ) - 1 , the best affine equivariant estimator of the generalized precision |∑|^(-1) is inadmissible and three classes of improved estimators are given.展开更多
The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D...The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery.展开更多
Clinical disorders often are characterized by a breakdown in dynamical processes that contribute to the control of upright standing.Disruption to a large number of physiological processes operating at different time s...Clinical disorders often are characterized by a breakdown in dynamical processes that contribute to the control of upright standing.Disruption to a large number of physiological processes operating at different time scales can lead to alterations in postural center of pressure(Co P)fluctuations.Multiscale entropy(MSE) has been used to identify differences in fluctuations of postural Co P time series between groups with and without known physiological impairments at multiple time scales.The purpose of this paper is to:1) review basic elements and current developments in entropy techniques used to assess physiological complexity;and 2) identify how MSE can provide insights into the complexity of physiological systems operating at multiple time scales that underlie the control of posture.We review and synthesize evidence from the literature providing support for MSE as a valuable tool to evaluate the breakdown in the physiological processes that accompany changes due to aging and disease in postural control.This evidence emerges from observed lower MSE values in individuals with multiple sclerosis,idiopathic scoliosis,and in older individuals with sensory impairments.Finally,we suggest some future applications of MSE that will allow for further insight into how physiological deficits impact the complexity of postural fluctuations;this information may improve the development and evaluation of new therapeutic interventions.展开更多
The momentum flow exchange between the impeller and side channel produces highly turbulent flows in side channel pumps.The turbulent flows feature complex patterns of vortex structures that are partly responsible for ...The momentum flow exchange between the impeller and side channel produces highly turbulent flows in side channel pumps.The turbulent flows feature complex patterns of vortex structures that are partly responsible for the dissipation of energy losses and unsteady pressure pulsations.The concept of turbulent flows in side channel pumps requires a reliable vortex identification criterion to capture and predict the effects of the vortex structures on the performance.For this reason,the current study presents the application of the new Ω-criterion to a side channel pump model in comparison with other traditional methods such as Qand λ2 criteria.The 3D flow fields of the pump were obtained through unsteady Reynolds-averaged Navier-Stokes(RANS)simulations.Comparative studies showed that the Ω-criterion identifies the vortex of different intensities with a standard threshold,Ω=0.52.The Q and λ2 criteria required different thresholds to capture vortex of different intensities thus leads to subjective errors.Comparing theΩ-criterion intensity on different planes with the entropy losses and pressure pulsation,the longitudinal vortex plays an important role in the momentum exchange development which increases the head performance of the pump.However,the rate of exchange is impeded by the axial and radial vortices restricted in the impeller.Therefore,the impeller generates the highest entropy loss and pressure pulsation intensities which lower the output efficiency.Finally,the findings provide a fundamental background to the morphology of the vortex structures in the turbulent flows which can be dependent upon for efficiency improvement of side channel pumps.展开更多
The Weibull distribution is regarded as among the finest in the family of failure distributions.One of the most commonly used parameters of the Weibull distribution(WD)is the ordinary least squares(OLS)technique,which...The Weibull distribution is regarded as among the finest in the family of failure distributions.One of the most commonly used parameters of the Weibull distribution(WD)is the ordinary least squares(OLS)technique,which is useful in reliability and lifetime modeling.In this study,we propose an approach based on the ordinary least squares and the multilayer perceptron(MLP)neural network called the OLSMLP that is based on the resilience of the OLS method.The MLP solves the problem of heteroscedasticity that distorts the estimation of the parameters of the WD due to the presence of outliers,and eases the difficulty of determining weights in case of the weighted least square(WLS).Another method is proposed by incorporating a weight into the general entropy(GE)loss function to estimate the parameters of the WD to obtain a modified loss function(WGE).Furthermore,a Monte Carlo simulation is performed to examine the performance of the proposed OLSMLP method in comparison with approximate Bayesian estimation(BLWGE)by using a weighted GE loss function.The results of the simulation showed that the two proposed methods produced good estimates even for small sample sizes.In addition,the techniques proposed here are typically the preferred options when estimating parameters compared with other available methods,in terms of the mean squared error and requirements related to time.展开更多
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito...A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.展开更多
Nonaxisymmetric endwall is an effective method to reduce secondary loss and improve aerodynamic performance.In this paper,a nonaxisymmetric endwall automated optimization process based on the nonuniform rational B-spl...Nonaxisymmetric endwall is an effective method to reduce secondary loss and improve aerodynamic performance.In this paper,a nonaxisymmetric endwall automated optimization process based on the nonuniform rational B-spline surface(NURBS)technique was proposed.This technique was applied for the aerodynamic optimization of the turbine stator shroud endwall to reduce total pressure loss and secondary kinetic energy.The flow fields of the datum endwall design(Datum)and optimization endwall design(Opt)were investigated and compared.Quantitative loss analysis was performed with a loss breakdown method.The entropy generation was classified as profile loss,secondary loss and trailing edge loss,all of which were reduced.The secondary loss was much smaller than the profile loss.In general,the blade row total entropy loss decreased by 11.7%.The results showed that the Opt design reduced total pressure loss and coefficient of secondary kinetic energy by 11.1%and 11.0%,respectively.The decrease in secondary kinetic energy could be attributed to the reduction in the horseshoe vortex and the reduced transverse pressure gradient.When the outlet Mach numbers and inlet incidence angles vary,the performance of the profiled endwall design was always better than the datum design.In the turbine stage simulation,the efficiency was increased by 0.28%with nonaxisymmetric endwall.展开更多
Based on lower record values,we first derive the exact explicit expressions as well as recurrence relations for the single and product moments of record values and then use these results to compute the means,variances...Based on lower record values,we first derive the exact explicit expressions as well as recurrence relations for the single and product moments of record values and then use these results to compute the means,variances and coefficient of skewness and kurtosis of exponentiated moment exponential distribution(EMED),a new extension of moment exponential distribution,recently introduced by Hasnain(Exponentiated moment exponential distribution.Ph.D.Thesis,2013).Next we obtain the maximum likelihood estimators of the unknown parameters and the approximate confidence intervals of the EMED.Finally,we consider Bayes estimation under the symmetric and asymmetric loss functions using gamma priors for both shape and scale parameters.We have also derived the Bayes interval of this distribution and discussed both frequentist and the Bayesian prediction intervals of the future record values based on the observed record values.Monte Carlo simulations are performed to compare the performances of the proposed methods,and a data set has been analyzed for illustrative purposes.展开更多
In this paper, we consider the estimation of a scatter matrix under entropy loss, quadratic loss, when the samples x(1),…,x(n) are i.i.d. and x(1) ̄ECp(μ,Σ,f). With respect to entropy and quadratic losses, we obtai...In this paper, we consider the estimation of a scatter matrix under entropy loss, quadratic loss, when the samples x(1),…,x(n) are i.i.d. and x(1) ̄ECp(μ,Σ,f). With respect to entropy and quadratic losses, we obtain the best estimator of Σ having the form αSx as well as having the form Tx△Tx' , where Sx,Tx and △ are given in the text, and obtain the minimax estimator of Σ and the best equivariant estimator of Σ with respect to the triangular transformations group LT+ (p)(the group consisting of lower triangular matrices with positive diagonal elements). Some related discussion are given as its generalizations.展开更多
Intrinsic loss functions(such as the Kullback-Leibler divergence,i.e.the entropy loss)have been used extensively in place of conventional loss functions for independent samples.But applica-tions in serially correlated...Intrinsic loss functions(such as the Kullback-Leibler divergence,i.e.the entropy loss)have been used extensively in place of conventional loss functions for independent samples.But applica-tions in serially correlated samples are scant.In the present study,we examine Bayes estimator of Linear Time Series(LTS)model under the entropy loss.We derive the Bayes estimator and show that it involves a frequentist expectation of regressors.We propose a Markov Chain Monte Carlo procedure that jointly simulates the posteriors of the LTS parameters with frequentist expecta-tion of regressors.We conduct Bayesian estimation of an LTS model for seasonal effects in some U.S.macroeconomic variables.展开更多
The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type ...The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type structure with a small amount of α-Fe phase as impurity.The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content.For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56.The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie temperature TC under a low magnetic field change of 1.5 T.The value of –ΔSm increased and then decreased with increasing Ce content, reached the maximum, 26.07 J/kg·K for x=0.3.TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content.The first-order metamagnetic transition was still kept in the hydrides and the maximum values of –ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kg K under a magnetic field change of 1.5 T.The values of –ΔSm were nearly independent of the Ce content and did not increase with increasing x for the hydrides.The La1–xCexFe11.44Si1.56Hy(x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K.These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.展开更多
基金The SRFDPHE(20070183023)the NSF(10571073,J0630104)of China
文摘In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum risk equivariant estimator under symmetric entropy loss is given, and the minimaxity of the minimum risk equivariant estimator is proved. The results with regard to admissibility and inadmissibility of a class of linear estimators of the form cT(X) + d are given, where T(X) Gamma(v, θ).
基金the National Natural Science Foundation of ChinaNow at Department of Mathematics, Huaiyin Teachers' College, Jiangsu, China
文摘Let X_1,...,Xn. be a random sample from multivariate normal distribution Np(μ,∑), where μ∈Rp and E is a positive definite matrix, both p and ∑ being unknown. It is shown that for the entropy loss L(δ, |∑| ^(- 1) )=δ/ |∑| ^(- 1) -log(δ/ |∑ |~ (- 1) ) - 1 , the best affine equivariant estimator of the generalized precision |∑|^(-1) is inadmissible and three classes of improved estimators are given.
基金Supported by National Key Technology R&G Program(Grant No.2012BAF03B01-X)Innovative Research Groups of National Natural Science Foundation of China(Grant No.51121004)
文摘The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery.
文摘Clinical disorders often are characterized by a breakdown in dynamical processes that contribute to the control of upright standing.Disruption to a large number of physiological processes operating at different time scales can lead to alterations in postural center of pressure(Co P)fluctuations.Multiscale entropy(MSE) has been used to identify differences in fluctuations of postural Co P time series between groups with and without known physiological impairments at multiple time scales.The purpose of this paper is to:1) review basic elements and current developments in entropy techniques used to assess physiological complexity;and 2) identify how MSE can provide insights into the complexity of physiological systems operating at multiple time scales that underlie the control of posture.We review and synthesize evidence from the literature providing support for MSE as a valuable tool to evaluate the breakdown in the physiological processes that accompany changes due to aging and disease in postural control.This evidence emerges from observed lower MSE values in individuals with multiple sclerosis,idiopathic scoliosis,and in older individuals with sensory impairments.Finally,we suggest some future applications of MSE that will allow for further insight into how physiological deficits impact the complexity of postural fluctuations;this information may improve the development and evaluation of new therapeutic interventions.
基金Supported by National Natural Science Foundation of China(Grant Nos.51809121,51879121)China Postdoctoral Science Foundation(Grant No.2021M701535).
文摘The momentum flow exchange between the impeller and side channel produces highly turbulent flows in side channel pumps.The turbulent flows feature complex patterns of vortex structures that are partly responsible for the dissipation of energy losses and unsteady pressure pulsations.The concept of turbulent flows in side channel pumps requires a reliable vortex identification criterion to capture and predict the effects of the vortex structures on the performance.For this reason,the current study presents the application of the new Ω-criterion to a side channel pump model in comparison with other traditional methods such as Qand λ2 criteria.The 3D flow fields of the pump were obtained through unsteady Reynolds-averaged Navier-Stokes(RANS)simulations.Comparative studies showed that the Ω-criterion identifies the vortex of different intensities with a standard threshold,Ω=0.52.The Q and λ2 criteria required different thresholds to capture vortex of different intensities thus leads to subjective errors.Comparing theΩ-criterion intensity on different planes with the entropy losses and pressure pulsation,the longitudinal vortex plays an important role in the momentum exchange development which increases the head performance of the pump.However,the rate of exchange is impeded by the axial and radial vortices restricted in the impeller.Therefore,the impeller generates the highest entropy loss and pressure pulsation intensities which lower the output efficiency.Finally,the findings provide a fundamental background to the morphology of the vortex structures in the turbulent flows which can be dependent upon for efficiency improvement of side channel pumps.
基金The authors are grateful to the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University Supporting Project Number(2020/01/16725),Prince Sattam bin Abdulaziz University,Saudi Arabia.
文摘The Weibull distribution is regarded as among the finest in the family of failure distributions.One of the most commonly used parameters of the Weibull distribution(WD)is the ordinary least squares(OLS)technique,which is useful in reliability and lifetime modeling.In this study,we propose an approach based on the ordinary least squares and the multilayer perceptron(MLP)neural network called the OLSMLP that is based on the resilience of the OLS method.The MLP solves the problem of heteroscedasticity that distorts the estimation of the parameters of the WD due to the presence of outliers,and eases the difficulty of determining weights in case of the weighted least square(WLS).Another method is proposed by incorporating a weight into the general entropy(GE)loss function to estimate the parameters of the WD to obtain a modified loss function(WGE).Furthermore,a Monte Carlo simulation is performed to examine the performance of the proposed OLSMLP method in comparison with approximate Bayesian estimation(BLWGE)by using a weighted GE loss function.The results of the simulation showed that the two proposed methods produced good estimates even for small sample sizes.In addition,the techniques proposed here are typically the preferred options when estimating parameters compared with other available methods,in terms of the mean squared error and requirements related to time.
基金funded by National Natural Science Foundation of China(Grant No. 51805146)the Fundamental Research Funds for the Central Universities (Grant No. B200202221)+1 种基金Jiangsu Key R&D Program (Grant Nos. BE2018004-1, BE2018004)College Students’ Innovative Entrepreneurial Training Plan Program (Grant No. 2020102941513)。
文摘A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.
基金the support of the National Science and Technology Major Project of China(No.2017-I-0005-0006)the Outstanding Youth Science Foundation of Heilongjiang Province of China(No.YQ2020E016)。
文摘Nonaxisymmetric endwall is an effective method to reduce secondary loss and improve aerodynamic performance.In this paper,a nonaxisymmetric endwall automated optimization process based on the nonuniform rational B-spline surface(NURBS)technique was proposed.This technique was applied for the aerodynamic optimization of the turbine stator shroud endwall to reduce total pressure loss and secondary kinetic energy.The flow fields of the datum endwall design(Datum)and optimization endwall design(Opt)were investigated and compared.Quantitative loss analysis was performed with a loss breakdown method.The entropy generation was classified as profile loss,secondary loss and trailing edge loss,all of which were reduced.The secondary loss was much smaller than the profile loss.In general,the blade row total entropy loss decreased by 11.7%.The results showed that the Opt design reduced total pressure loss and coefficient of secondary kinetic energy by 11.1%and 11.0%,respectively.The decrease in secondary kinetic energy could be attributed to the reduction in the horseshoe vortex and the reduced transverse pressure gradient.When the outlet Mach numbers and inlet incidence angles vary,the performance of the profiled endwall design was always better than the datum design.In the turbine stage simulation,the efficiency was increased by 0.28%with nonaxisymmetric endwall.
文摘Based on lower record values,we first derive the exact explicit expressions as well as recurrence relations for the single and product moments of record values and then use these results to compute the means,variances and coefficient of skewness and kurtosis of exponentiated moment exponential distribution(EMED),a new extension of moment exponential distribution,recently introduced by Hasnain(Exponentiated moment exponential distribution.Ph.D.Thesis,2013).Next we obtain the maximum likelihood estimators of the unknown parameters and the approximate confidence intervals of the EMED.Finally,we consider Bayes estimation under the symmetric and asymmetric loss functions using gamma priors for both shape and scale parameters.We have also derived the Bayes interval of this distribution and discussed both frequentist and the Bayesian prediction intervals of the future record values based on the observed record values.Monte Carlo simulations are performed to compare the performances of the proposed methods,and a data set has been analyzed for illustrative purposes.
文摘In this paper, we consider the estimation of a scatter matrix under entropy loss, quadratic loss, when the samples x(1),…,x(n) are i.i.d. and x(1) ̄ECp(μ,Σ,f). With respect to entropy and quadratic losses, we obtain the best estimator of Σ having the form αSx as well as having the form Tx△Tx' , where Sx,Tx and △ are given in the text, and obtain the minimax estimator of Σ and the best equivariant estimator of Σ with respect to the triangular transformations group LT+ (p)(the group consisting of lower triangular matrices with positive diagonal elements). Some related discussion are given as its generalizations.
文摘Intrinsic loss functions(such as the Kullback-Leibler divergence,i.e.the entropy loss)have been used extensively in place of conventional loss functions for independent samples.But applica-tions in serially correlated samples are scant.In the present study,we examine Bayes estimator of Linear Time Series(LTS)model under the entropy loss.We derive the Bayes estimator and show that it involves a frequentist expectation of regressors.We propose a Markov Chain Monte Carlo procedure that jointly simulates the posteriors of the LTS parameters with frequentist expecta-tion of regressors.We conduct Bayesian estimation of an LTS model for seasonal effects in some U.S.macroeconomic variables.
基金Project supported by National Natural Science Foundation of China(51261001)
文摘The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type structure with a small amount of α-Fe phase as impurity.The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content.For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56.The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie temperature TC under a low magnetic field change of 1.5 T.The value of –ΔSm increased and then decreased with increasing Ce content, reached the maximum, 26.07 J/kg·K for x=0.3.TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content.The first-order metamagnetic transition was still kept in the hydrides and the maximum values of –ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kg K under a magnetic field change of 1.5 T.The values of –ΔSm were nearly independent of the Ce content and did not increase with increasing x for the hydrides.The La1–xCexFe11.44Si1.56Hy(x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K.These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.