Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process...Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process of the aeroplane. Further, liquid nitrogen can find applications in cooling equipment or electronic devices, i.e., high temperature superconducting(HTS) cables. So, herein, we have analysed the entropy generation(EG), nonlinear thermal radiation and unsteady(time-dependent) nature of the flow on quadratic combined convective flow over a permeable slender cylinder with diffusions of liquid hydrogen and nitrogen. The governing equations for flow and heat transfer characteristics are expressed in terms of nonlinear coupled partial differential equations. The solutions of these equations are attempted numerically by employing the quasilinearization technique with the implicit finite difference approximation. It is found that EG is minimum for double diffusion(liquid hydrogen and heat diffusion)than triple diffusion(diffusion of liquid hydrogen, nitrogen and heat). The enhancing values of the radiation parameter R_(d) and temperature ratio θ_(w) augment the fluid temperature for steady and unsteady cases as well as the local Nusselt number. Because, the fluid absorbs the heat energy released due to radiation, and in turn releases the heat energy from the cylinder to the surrounding surface.展开更多
In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the ...In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization prin ciples are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one.展开更多
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s...Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.展开更多
The objective of this work is to estimate the accuracy of a predicted velocity profile which can be gained from experimental results, in comparison with the exact ones by the methodology of entropy generation. The ana...The objective of this work is to estimate the accuracy of a predicted velocity profile which can be gained from experimental results, in comparison with the exact ones by the methodology of entropy generation. The analysis is concerned with the entropy generation rate in hydrodynamic, steady, laminar, and incompressible flow for Newtonian fluids in the insulated channels of arbitrary cross section. The entropy generation can be calculated from two local and overall techniques. Adaptation of the results of these techniques depends on the used velocity profile. Results express that in experimental works, whatever the values of local and overall entropy generation rates are close to each other, the results are more accuracy. In order to extent the subject, different geometries have been investigated. Also, the influence studied, and the distribution of volumetric geometries is drawn. of geometry on the entropy generation rate is local entropy generation rate for the selected geometries is drawn.展开更多
The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse m...The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink The unsteady governing equations are solved by a shooting method with the Runge-Kutta- Fehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation num- ber, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.展开更多
Based on the Second Law of Thermodynamics, the entropy generation is studied for laminar forced convection flow of different nanoparticles(Al_2 O_3, CuO and SiO_2) mixed with water through a hexagon microchannel heat ...Based on the Second Law of Thermodynamics, the entropy generation is studied for laminar forced convection flow of different nanoparticles(Al_2 O_3, CuO and SiO_2) mixed with water through a hexagon microchannel heat sink(HMCHS). The effects of different heat fluxes and Reynolds numbers on the entropy generation for different nanofluids, volume fractions and nanoparticles diameter are investigated. The heat flux is in the range of 125 to 500 kW·m^(-2) and the Reynolds numbers vary between 200 and 1500. The thermal, frictional and total entropy generations are calculated by integrating the volumetric rate components over the entire HMCHS. The results clearly show that the rise in the heat flux leads to an increase in the thermal entropy generation for nanofluids and pure water but they don't have any influence on the frictional entropy generation. Moreover, when the Reynolds number increases, the frictional entropy generation increases while the thermal entropy generation decreases. The results revealed that at low heat fluxes and high Reynolds numbers, pure water gives the lowest entropy generation, while at high heat flux the nanofluid has to be used in order to lower the overall irreversibility.展开更多
To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved...To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved statistical global optical flow entropy which can better describe the degree of chaos of crowd.First,the optical flow field is extracted from the video sequences and a 2D optical flow histogram is gained.Then,the improved optical flow entropy,combining information theory with statistical physics is calculated from 2D optical flow histograms.Finally,the anomaly can be detected according to the abnormality judgment formula.The experimental results show that the detection accuracy achieved over 95%in three public video datasets,which indicates that the proposed algorithm outperforms other state-of-the-art algorithms.展开更多
The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe_(3)O_(4) based Brinkmann type nanofluid flow over a vertical rotating frame.The Tiwari ...The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe_(3)O_(4) based Brinkmann type nanofluid flow over a vertical rotating frame.The Tiwari and Das nanofluid model is employed to examine the effects of dimensionless numbers,including Grashof,Eckert,and Schmidt numbers and governing parameters like solid volume fraction of nanoparticles,Hall current,magnetic field,viscous dissipation,and the chemical reaction on the physical quantities.The dimensionless nonlinear partial differential equations are solved using a finite difference method known as Runge-Kutta Fehlberg(RKF-45)method.The variation of dimensionless velocity,temperature,concentration,skin friction,heat,and mass transfer rate,as well as for entropy generation and Bejan number with governing parameters,are presented graphically and are provided in tabular form.The results reveal that the Nusselt number increases with an increase in the solid volume fraction of nanoparticles.Furthermore,the rate of entropy generation and Bejan number depends upon the magnetic field and the Eckert number.展开更多
In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can b...In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate,based on which the velocity field can be optimized.The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor,so the entropy generation due to oxygen mass transfer is used as the objective function,and the conservation equations of the gas–liquid flow and species concentration are taken as constraints.This optimization problem is solved by the calculus of variations,the optimal liquid flow pattern is obtained and the relationship of the maximum mass transfer enhancement on viscous dissipation is revealed,which can be used to improve the design of internal structure of the bubble column reactor.展开更多
Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple...Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.展开更多
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of ...We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.展开更多
The evolution of Typhoon Matsa (0509) is examined in terms of entropy flow through an entropy balance equation derived from the Gibbs relation, according to the second law of thermodynamics. The entropy flows in the v...The evolution of Typhoon Matsa (0509) is examined in terms of entropy flow through an entropy balance equation derived from the Gibbs relation, according to the second law of thermodynamics. The entropy flows in the various significant stages of (genesis, development and decaying) during its evolution are diagnosed based on the outputs of the PSU/NCAR mesoscale model (known as MM5). The results show that: (1) the vertical spatial distribution of entropy flow for Matsa is characterized by a predominantly negative entropy flow in a large portion of the troposphere and a positive flow in the upper levels; (2) the fields of entropy flows at the middle troposphere (500 hPa) show that the growth of the typhoon is greatly dependent on the negative entropy flows from its surroundings; and (3) the simulated centres of heavy rainfall associated with the typhoon match well with the zones of large negative entropy flows, suggesting that they may be a significant indicator for severe weather events.展开更多
Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy g...Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distributions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expressions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nusselts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number are compared with theoretical findings by other investigators and reasonable agreement is found.展开更多
This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have...This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.展开更多
文摘Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process of the aeroplane. Further, liquid nitrogen can find applications in cooling equipment or electronic devices, i.e., high temperature superconducting(HTS) cables. So, herein, we have analysed the entropy generation(EG), nonlinear thermal radiation and unsteady(time-dependent) nature of the flow on quadratic combined convective flow over a permeable slender cylinder with diffusions of liquid hydrogen and nitrogen. The governing equations for flow and heat transfer characteristics are expressed in terms of nonlinear coupled partial differential equations. The solutions of these equations are attempted numerically by employing the quasilinearization technique with the implicit finite difference approximation. It is found that EG is minimum for double diffusion(liquid hydrogen and heat diffusion)than triple diffusion(diffusion of liquid hydrogen, nitrogen and heat). The enhancing values of the radiation parameter R_(d) and temperature ratio θ_(w) augment the fluid temperature for steady and unsteady cases as well as the local Nusselt number. Because, the fluid absorbs the heat energy released due to radiation, and in turn releases the heat energy from the cylinder to the surrounding surface.
基金supported by the Tsinghua University Initiative Scientific Research Programthe National Natural Science Foundation of China(GrantNo.51136001)
文摘In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization prin ciples are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one.
基金Project(51576213)supported by the National Natural Science Foundation of ChinaProject(2015RS4015)supported by the Hunan Scientific Program,ChinaProject(2016zzts323)supported by the Innovation Project of Central South University,China
文摘Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.
基金partly supported by a grant from the Center of Excellence on Modeling and Control Systems (CEMCS) of Ferdowsi University of Mashhad,Iran
文摘The objective of this work is to estimate the accuracy of a predicted velocity profile which can be gained from experimental results, in comparison with the exact ones by the methodology of entropy generation. The analysis is concerned with the entropy generation rate in hydrodynamic, steady, laminar, and incompressible flow for Newtonian fluids in the insulated channels of arbitrary cross section. The entropy generation can be calculated from two local and overall techniques. Adaptation of the results of these techniques depends on the used velocity profile. Results express that in experimental works, whatever the values of local and overall entropy generation rates are close to each other, the results are more accuracy. In order to extent the subject, different geometries have been investigated. Also, the influence studied, and the distribution of volumetric geometries is drawn. of geometry on the entropy generation rate is local entropy generation rate for the selected geometries is drawn.
文摘The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink The unsteady governing equations are solved by a shooting method with the Runge-Kutta- Fehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation num- ber, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.
基金the Politehnica University of Bucharest in Romania for supporting this project financially
文摘Based on the Second Law of Thermodynamics, the entropy generation is studied for laminar forced convection flow of different nanoparticles(Al_2 O_3, CuO and SiO_2) mixed with water through a hexagon microchannel heat sink(HMCHS). The effects of different heat fluxes and Reynolds numbers on the entropy generation for different nanofluids, volume fractions and nanoparticles diameter are investigated. The heat flux is in the range of 125 to 500 kW·m^(-2) and the Reynolds numbers vary between 200 and 1500. The thermal, frictional and total entropy generations are calculated by integrating the volumetric rate components over the entire HMCHS. The results clearly show that the rise in the heat flux leads to an increase in the thermal entropy generation for nanofluids and pure water but they don't have any influence on the frictional entropy generation. Moreover, when the Reynolds number increases, the frictional entropy generation increases while the thermal entropy generation decreases. The results revealed that at low heat fluxes and high Reynolds numbers, pure water gives the lowest entropy generation, while at high heat flux the nanofluid has to be used in order to lower the overall irreversibility.
基金National Natural Science Foundation of China(61701029)。
文摘To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved statistical global optical flow entropy which can better describe the degree of chaos of crowd.First,the optical flow field is extracted from the video sequences and a 2D optical flow histogram is gained.Then,the improved optical flow entropy,combining information theory with statistical physics is calculated from 2D optical flow histograms.Finally,the anomaly can be detected according to the abnormality judgment formula.The experimental results show that the detection accuracy achieved over 95%in three public video datasets,which indicates that the proposed algorithm outperforms other state-of-the-art algorithms.
文摘The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe_(3)O_(4) based Brinkmann type nanofluid flow over a vertical rotating frame.The Tiwari and Das nanofluid model is employed to examine the effects of dimensionless numbers,including Grashof,Eckert,and Schmidt numbers and governing parameters like solid volume fraction of nanoparticles,Hall current,magnetic field,viscous dissipation,and the chemical reaction on the physical quantities.The dimensionless nonlinear partial differential equations are solved using a finite difference method known as Runge-Kutta Fehlberg(RKF-45)method.The variation of dimensionless velocity,temperature,concentration,skin friction,heat,and mass transfer rate,as well as for entropy generation and Bejan number with governing parameters,are presented graphically and are provided in tabular form.The results reveal that the Nusselt number increases with an increase in the solid volume fraction of nanoparticles.Furthermore,the rate of entropy generation and Bejan number depends upon the magnetic field and the Eckert number.
基金supported by the National Natural Science Foundation of China(91834303 and 22108261)the Open Foundation of State Key Laboratory of Chemical Engineering(SKL-ChE-19B02)+1 种基金Fundamental Research Program of Shanxi Province(20210302124618)Scientific Technological Innovation Programs of Higher Education Institution in Shanxi(2020L0284).
文摘In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate,based on which the velocity field can be optimized.The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor,so the entropy generation due to oxygen mass transfer is used as the objective function,and the conservation equations of the gas–liquid flow and species concentration are taken as constraints.This optimization problem is solved by the calculus of variations,the optimal liquid flow pattern is obtained and the relationship of the maximum mass transfer enhancement on viscous dissipation is revealed,which can be used to improve the design of internal structure of the bubble column reactor.
基金partially supported by the National Science Foundation under Grant No.NSF DMS-1054115a Sloan Foundation Research Fellowship
文摘Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41174109 and 61104148)the National Science and Technology Major Project of China(Grant No.2011ZX05020-006)the Zhejiang Key Discipline of Instrument Science and Technology,China(Grant No.JL130106)
文摘We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.
基金Natural Science Foundation of China (40475022 40333028)
文摘The evolution of Typhoon Matsa (0509) is examined in terms of entropy flow through an entropy balance equation derived from the Gibbs relation, according to the second law of thermodynamics. The entropy flows in the various significant stages of (genesis, development and decaying) during its evolution are diagnosed based on the outputs of the PSU/NCAR mesoscale model (known as MM5). The results show that: (1) the vertical spatial distribution of entropy flow for Matsa is characterized by a predominantly negative entropy flow in a large portion of the troposphere and a positive flow in the upper levels; (2) the fields of entropy flows at the middle troposphere (500 hPa) show that the growth of the typhoon is greatly dependent on the negative entropy flows from its surroundings; and (3) the simulated centres of heavy rainfall associated with the typhoon match well with the zones of large negative entropy flows, suggesting that they may be a significant indicator for severe weather events.
文摘Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distributions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expressions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nusselts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number are compared with theoretical findings by other investigators and reasonable agreement is found.
文摘This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.