期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Soft–strong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst 被引量:9
1
作者 Ning Jianguo Wang Jun +2 位作者 Liu Xuesheng Qian Kun Sun Bi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期805-810,共6页
When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body ... When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst. 展开更多
关键词 Deep coal seam Rockburst Gob-side entry retaining Soft-strong supporting body
下载PDF
An Innovative Non-Pillar Coal-Mining Technology with Automatically Formed Entry: A Case Study 被引量:10
2
作者 Xingyu Zhang Manchao He +3 位作者 Jun Yang Eryu Wang Jiabin Zhang Yue Sun 《Engineering》 SCIE EI 2020年第11期1315-1329,共15页
A non-pillar coal-mining technology with an automatically formed entry is proposed,which reduces the waste of coal resources and the underground entry drivage workload.Three key techniques in this technology cooperate... A non-pillar coal-mining technology with an automatically formed entry is proposed,which reduces the waste of coal resources and the underground entry drivage workload.Three key techniques in this technology cooperate to achieve automatic formation and retaining of the gob-side entry,and to realize nonpillar mining.Constant-resistance large deformation(CRLD)support ensures the stability of the entry roof;directional presplitting blasting(DPB)separates the entry roof and the gob roof;and a blockinggangue support system(BGSS)integrates the caved rock material as an effective entry rib.An industrial test was conducted to verify the engineering effects of these key techniques.The field application results showed that the retained entry was under the pressure-relief zone due to the broken-expansion nature of the caved rock mass within the DPB height.After going through a provisional dynamic pressure-bearing zone,the retained entry entered the stability zone.The final stable entry meets the requirements of safety and production.The research results demonstrate the good engineering applicability of this technology.By taking the framework of the technology design principles into consideration and adjusting the measures according to different site conditions,it is expected that the proposed non-pillar coal-mining technology can be popularized on a large scale. 展开更多
关键词 Non-pillar mining entry support Retained entry Rock engineering Industrial test
下载PDF
An Expert System for the Design of Surrounding Rock Support in Mine Entries
3
《岩石力学与工程学报》 EI CAS CSCD 1995年第S1期492-500,共9页
AnExpertSystemfortheDesignofSurroundingRockSupportSysteminMineEntriesByFengXiatingandLinYunmei(NortheasternU... AnExpertSystemfortheDesignofSurroundingRockSupportSysteminMineEntriesByFengXiatingandLinYunmei(NortheasternUnivetrsity.Shenya... 展开更多
关键词 DESIGN An Expert System for the Design of Surrounding Rock support in Mine Entries
下载PDF
Roof bolting and underground roof falls 被引量:1
4
作者 Syd Peng 《Geohazard Mechanics》 2023年第1期32-37,共6页
Roof bolting has been used in underground entry(roadway)support in U.S.coal mines since the Coal Mine Health and Safety Act of 1969(US Congress,1977)recognized roof bolting as the only means of underground entry(roadw... Roof bolting has been used in underground entry(roadway)support in U.S.coal mines since the Coal Mine Health and Safety Act of 1969(US Congress,1977)recognized roof bolting as the only means of underground entry(roadway)support.For U.S.underground coal mines,roof bolting pattern is fixed at 44 ft(1.21.2 m),except in the Pittsburgh Seam where longwall mining is practiced,with occasional 3.64 ft(1.11.2 m)pattern.However,roof falls or roof failure often occurs in roof-bolted entries in U.S.coal mines.Roof falls can roughly be divided into four types:skin falls,large falls,cutter roofs,and massive falls.Based on this situation,the roof is initially strengthened by bolt based on suspension and friction mechanism.By comparing roof bolting patterns in different coal producing countries,bolt density in all other countries is much higher(except South Africa)than that used in the U.S.In spite of its long history of successful application with hundreds of millions of units installed,roof bolting design is still the lack of a commonly accepted method. 展开更多
关键词 Roof bolting Underground entry(roadway)support Roof falls Bolt density Roof bolting design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部