High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system suc...High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system such as complicated calibration process,cumbersome aided-instruments,strict limitation of working distance, this paper carries out an optical method in which two high-speed cameras with variable-zoom lenses are adopted as binocular stereo sensors of measurement system and a high-ac-curacy 3D target with fast reconstruction is designed. The intrinsic parameters of the sensors and the relative positions between coordinate systems are solved by the method of colinearity constrained optimization algorithm. The calibration process is easy to operate and the device is also of portability. Most importantly, the severe working distance limitation between sensors and measured body is solved, enhancing the adaptability of measurement system to environment. Experimental results show that when the sensors are in the range of 8 -16 m away from the measured body, system accuracy can reach up to ±0. 5 mm, which meets the requirements to measure the dynamic envelope curve of high-speed vehicle.展开更多
Dynamic envelope curve is a significant parameter to assess the running safety of high-speed trains.Up to now the method based on binocular stereo vision is the only way available to measure the dynamic envelope curve...Dynamic envelope curve is a significant parameter to assess the running safety of high-speed trains.Up to now the method based on binocular stereo vision is the only way available to measure the dynamic envelope curve of a train,the speed of which is over200km/h.Nevertheless the method has two limitations,one is large field-〇f-view(FO V),the other is calibration time.Hence portable calibration equipment,easy-t〇-build target and rapid calibration algorithm are required to complete the calibration.In this paper,a new rapid on-site calibration method with large FOV based on binocular stereo vision is proposed.To address these issues,a light target has been designed,the rail coordinate system(RCS)is represented by40fixed retroreflective points on the target,and they are utilized to calibrate the parameters of two cameras.In addition,two cameras merely capture a single image of the target simultaneously,and the intrinsic and extrinsic parameters of the cameras can be calculated rapidly.To testify the proposed method,the experiments have been conducted and the results reveal that the accuracy can reach+1mm,which can meet the measurement requirement.展开更多
in the design of civil and water conservancy projects, the identical slope suffice isfrequently used. Its mathematical model may be formulated as an envelope of a cone when itS vertexmoves along the cylindrical helix....in the design of civil and water conservancy projects, the identical slope suffice isfrequently used. Its mathematical model may be formulated as an envelope of a cone when itS vertexmoves along the cylindrical helix. According to the principle of conStrUcting the envelope curves of afamily of circles, the parametric equstion for the identical slope surface is established. The parametricform makes it most convenient to draw the contour lines and grade lines, and is well suited toproduce indexed projection of identical slope surface in civil and water conservancy projects.展开更多
In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, ...In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.展开更多
A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designe...A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate.展开更多
To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal t...To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal that the shape of the strength envelope on the π plane gradually changes from the shape of the Lade criterion to the shape of the Drucker-Prage criterion with an increase in hydrostatic stress.Normally, there exists a deviation between the strain and stress paths for porous rocks on the π plane,and the deviation decreases with an increase in stress Lode angle and hydrostatic stress. A rock failure hypothesis based on the rock porous structure was proposed to investigate the reasons for the abovementioned phenomena. It was found that the shear expansion in the minimum principal stress direction is the dominant factor affecting the Lode angle effect(LAE);the magnitude of the hydrostatic stress induces the variation of the porous structure and influences the shear expansion. Therefore, the hydrostatic stress state affects the LAE. The failure hypothesis proposed in this paper can clarify the hydrostatic stress effect, LAE, and the variation of the rock strength envelope shape.展开更多
Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the ...Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the designed shape of draft tube and to meet the requirement of construction lofting, the configuration of reinforcing bars and the fabrication of templates, the geometry of elbow tubes has to be accurately calculated to draw engineering graphics. Based on the derived equations in this paper, the motion of elbow tube curve envelope is simulated by using computers, which shows directly the smoothness of the curve and provides dynamic simulation for the study and optimization of the design and construction of elbow draft tubes, along with the front view and bottom view.展开更多
Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected...Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected to tests.Herein,a modified ductility factor model for corroded RC column is developed on the basis of the previous work and additional experiments.The model involves the influence of both the corrosion ratio of longitudinal rebar and the axial load ratio.A four-linear envelope curve model concerning lateral load and displacement is proposed in a combination of determination rules of the peak point and the failure strength point.The hysteretic model of corroded RC columns is developed by considering both degraded unloading stiffness and reloading stiffness on the history peak point.The hysteretic model can predict the residual life of corroded RC columns under seismic loading.展开更多
基金National Science and Technology Major Project(No.2016ZX04003001)
文摘High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system such as complicated calibration process,cumbersome aided-instruments,strict limitation of working distance, this paper carries out an optical method in which two high-speed cameras with variable-zoom lenses are adopted as binocular stereo sensors of measurement system and a high-ac-curacy 3D target with fast reconstruction is designed. The intrinsic parameters of the sensors and the relative positions between coordinate systems are solved by the method of colinearity constrained optimization algorithm. The calibration process is easy to operate and the device is also of portability. Most importantly, the severe working distance limitation between sensors and measured body is solved, enhancing the adaptability of measurement system to environment. Experimental results show that when the sensors are in the range of 8 -16 m away from the measured body, system accuracy can reach up to ±0. 5 mm, which meets the requirements to measure the dynamic envelope curve of high-speed vehicle.
基金National Science and Technology Major Project of China(No.2016ZX04003001)
文摘Dynamic envelope curve is a significant parameter to assess the running safety of high-speed trains.Up to now the method based on binocular stereo vision is the only way available to measure the dynamic envelope curve of a train,the speed of which is over200km/h.Nevertheless the method has two limitations,one is large field-〇f-view(FO V),the other is calibration time.Hence portable calibration equipment,easy-t〇-build target and rapid calibration algorithm are required to complete the calibration.In this paper,a new rapid on-site calibration method with large FOV based on binocular stereo vision is proposed.To address these issues,a light target has been designed,the rail coordinate system(RCS)is represented by40fixed retroreflective points on the target,and they are utilized to calibrate the parameters of two cameras.In addition,two cameras merely capture a single image of the target simultaneously,and the intrinsic and extrinsic parameters of the cameras can be calculated rapidly.To testify the proposed method,the experiments have been conducted and the results reveal that the accuracy can reach+1mm,which can meet the measurement requirement.
文摘in the design of civil and water conservancy projects, the identical slope suffice isfrequently used. Its mathematical model may be formulated as an envelope of a cone when itS vertexmoves along the cylindrical helix. According to the principle of conStrUcting the envelope curves of afamily of circles, the parametric equstion for the identical slope surface is established. The parametricform makes it most convenient to draw the contour lines and grade lines, and is well suited toproduce indexed projection of identical slope surface in civil and water conservancy projects.
基金supported by the State Key Laboratory of Coal Resources and Safe Mining (No. SKLCRSM10X04)the National Natural Science Foundation of China ((No. 21243006)+1 种基金the Foundation of Ministry of Education of China ((No. 02019)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.SZBF2011-6-B35)
文摘In order to study temperature field distribution in burnt surrounding rock and to determine ranges of burnt surrounding rock, coal-wall coking cycle and heat influence in the underground coal gasification(UCG) stope, based on the Laplace transform and inversion formula, we studied the temperature analytical solution of one-dimensional unsteady heat conduction for multi-layer overlying strata under the first and the forth kinds of boundary conditions, and we also carried out a numerical simulation of twodimensional unsteady heat conduction by the COMSOL multiphysics. The results show that when the boundary temperature of surrounding rock has a linear decrease because of a directional movement of heat source in the UCG flame working face, the temperature in surrounding rock increases first and then decreases with time, the peak of temperature curve decreases gradually and its position moves inside surrounding rock from the boundary. In the surrounding rock of UCG stope, there is an envelope curve of temperature curve clusters. We analyzed the influence of thermophysical parameters on envelope curves and put forward to take envelope curve as the calculation basis for ranges of burnt surrounding rock, coal-wall coking cycle and heat influence. Finally, the concrete numerical values are given by determining those judgement standards and temperature thresholds, which basically tally with the field geophysical prospecting results.
基金Project supported by the Research Foundation for the DoctoralProgram of Higher Education of China (No. 20050335097)Caoe River Dam Investment Ltd., China
文摘A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate.
文摘To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal that the shape of the strength envelope on the π plane gradually changes from the shape of the Lade criterion to the shape of the Drucker-Prage criterion with an increase in hydrostatic stress.Normally, there exists a deviation between the strain and stress paths for porous rocks on the π plane,and the deviation decreases with an increase in stress Lode angle and hydrostatic stress. A rock failure hypothesis based on the rock porous structure was proposed to investigate the reasons for the abovementioned phenomena. It was found that the shear expansion in the minimum principal stress direction is the dominant factor affecting the Lode angle effect(LAE);the magnitude of the hydrostatic stress induces the variation of the porous structure and influences the shear expansion. Therefore, the hydrostatic stress state affects the LAE. The failure hypothesis proposed in this paper can clarify the hydrostatic stress effect, LAE, and the variation of the rock strength envelope shape.
基金Supported by Open Fund of Key Laboratory of Ministry of Education of Hydraulic and Waterway Engineering of Chongqing Jiaotong University Province and Department Construction together(SLK2009A04)
文摘Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the designed shape of draft tube and to meet the requirement of construction lofting, the configuration of reinforcing bars and the fabrication of templates, the geometry of elbow tubes has to be accurately calculated to draw engineering graphics. Based on the derived equations in this paper, the motion of elbow tube curve envelope is simulated by using computers, which shows directly the smoothness of the curve and provides dynamic simulation for the study and optimization of the design and construction of elbow draft tubes, along with the front view and bottom view.
基金the Programs for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China(No.IRT1067)the National Natural Science Foundation of China(No.51868065)。
文摘Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected to tests.Herein,a modified ductility factor model for corroded RC column is developed on the basis of the previous work and additional experiments.The model involves the influence of both the corrosion ratio of longitudinal rebar and the axial load ratio.A four-linear envelope curve model concerning lateral load and displacement is proposed in a combination of determination rules of the peak point and the failure strength point.The hysteretic model of corroded RC columns is developed by considering both degraded unloading stiffness and reloading stiffness on the history peak point.The hysteretic model can predict the residual life of corroded RC columns under seismic loading.