A country’s ability to create complex goods and diversify its lines of products is essential for addressing all types of vulnerabilities.Quantifying a country’s vulnerability to extreme climatic events,such as droug...A country’s ability to create complex goods and diversify its lines of products is essential for addressing all types of vulnerabilities.Quantifying a country’s vulnerability to extreme climatic events,such as droughts,superstorms,and other natural disasters,and its capacity for successful adaption,is an essential global need that has been ignored.This study examines the role of economic fitness(EF)in addressing climate change risk ex‐posure in BRICS countries in the context of the environmental Kuznets curve using panel data from 1995 to 2015.Panel threshold methodology is employed to ascertain the nonlinear relationship between EF and climate change risk exposure(i.e.,Notre Dame Global Adaptation Initiative Country Index(ND-GAIN)).In addition,empirical associations were estimated using panel-corrected standard errors,Driscoll-Kraay standard errors,and feasible generalized least squares estimation techniques.These findings demonstrated an inverted N shaped link between EF and ND-GAIN.Moreover,even after controlling for significant ND-GAIN influencing variables such as gross domestic product per capita,financial development,and urbanization,our robustness checks revealed significant and consistent findings.展开更多
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre...Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.展开更多
This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol...This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.展开更多
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
The European Union(EU) and Organisation for Economic Co-operation and Development(OECD) aim to develop long-term policies for their respective member countries. Having observed increasing dangers to the environment po...The European Union(EU) and Organisation for Economic Co-operation and Development(OECD) aim to develop long-term policies for their respective member countries. Having observed increasing dangers to the environment posed by rising economic growth, they are seeking pathways to enable policy action on economic growth and environmental sustainability. Given the facts in theoretical and empirical studies, this study assessed the validity of the decoupling hypothesis by investigating asymmetricity in the relationship between environmental sustainability and economic growth in nine Eastern European countries from 1998 to 2017 using the cross-section augmented Dickey-Fuller(CADF) unit root, panel corrected standard error(PCSE), common correlated effect mean group(CCEMG), and Dumitrescu Hurlin causality approaches. Both population growth and drinking water are used as controlled variables. The outcomes establish strong cointegration among all the variables of interest. According to the results of CCEMG test, economic growth exerts short-term environmental degradation but has long-term environmental benefits in Eastern Europe;and population growth and drinking water exert a positive effect on environmental sustainability in both the short-and long-run. The results of Dumitrescu Hurlin causality test indicate that environmental sustainability is unidirectionally affected by economic growth. Based on these outcomes, we suggest the following policies:(1) the EU and OECD should implement member-targeted policies on economic growth and fossil-fuel use towards regulating industrial pollution, water use, and population control;and(2) the EU and OECD member countries should invest in environmental technologies through green research and development(R&D) to transform their dirty industrial processes and ensure productive energy use.展开更多
The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE m...The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described.展开更多
Globally,economies have become complex and new technologies have transformed and facilitated the modernization of economies.In the previous literature,economic complexity approach has become one of the popular tools i...Globally,economies have become complex and new technologies have transformed and facilitated the modernization of economies.In the previous literature,economic complexity approach has become one of the popular tools in the development and innovation studies of economic geography.Researchers have found that green technology and eco-innovation approaches should be used to decisively reduce the effects of carbon emissions on the environment.However,debates about the impact of economic complexity on environment remain unsettled since some emerging production technologies have far-reaching pollution effects.This study explored the impacts of economic complexity on environmental sustainability in Turkey using the novel Fourier-based approaches,namely:Fourier Augmented Dickey-Fuller(FADF)and Fourier Autoregressive-Distributed Lag(FARDL)models.The Fourier-based approaches indicated that all variables(economic complexity index(ECI),GDP,energy consumption,and CO_(2)emission(CO_(2)E))are cointegrated in the long run.Additionally,the FARDL model implied that(i)in the long run,the effect of ECI(as a proxy for economic complexity),GDP(as a proxy for economic growth),and energy consumption on CO_(2)E(as a proxy for environmental quality)are important;(ii)economic complexity decreases environmental degradation in Turkey;and(iii)economic growth and energy consumption negatively affect environmental quality.The results also showed that economic complexity could be used as a policy tool to tackle environmental degradation.The findings also revealed that the fossil fuelbased economy will continue to expand and undermine Turkey’s efforts to meet its net zero emission target by 2053.Therefore,policy-makers should take actions and establish diversified economic,environmental,and energy strategies.For policy insights,the Turkish governments can use the combination of tax exemptions and technical support systems to support knowledge creation and the diffusion of environmentally friendly technologies The governments can also impose strict environmental regulations on the knowledge development phases.展开更多
To capitalize on the synergies between the Econometrics course and the Environmental Economics major,this paper aims to enhance students’ability to conduct empirical analysis and practical application using econometr...To capitalize on the synergies between the Econometrics course and the Environmental Economics major,this paper aims to enhance students’ability to conduct empirical analysis and practical application using econometric models.It also seeks to promote collaborative teaching through case studies and model research.The primary focus is on the hot research issues within the field of environmental economics,utilizing the econometric model as a vehicle for instruction.To achieve this,the paper proposes the development of a comprehensive case library specific to environmental economics.This resource will serve to optimize the case teaching approach,incorporating the use of econometric software,and fostering interactive teaching models between educators and students.By implementing these strategies,the paper outlines a path and mode for collaborative teaching that effectively bridges the gap between econometrics and environmental economics.展开更多
In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e.,...In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e., total fuel cost and emission. In the proposed algorithm, each solution is represented by a chemical molecule. A novel encoding mechanism for solving the multi-area environmental/economic dispatch optimization problems is designed to dynamically enhance the performance of the proposed algorithm. Then, an ensemble of effective neighborhood approaches is developed, and a selfadaptive neighborhood structure selection mechanism is also embedded in PCRO to increase the search ability while maintaining population diversity. In addition, a grid-based crowding distance strategy is introduced, which can obviously enable the algorithm to easily converge near the Pareto front. Furthermore,a kinetic-energy-based search procedure is developed to enhance the global search ability. Finally, the proposed algorithm is tested on sets of the instances that are generated based on realistic production. Through the analysis of experimental results, the highly effective performance of the proposed PCRO algorithm is favorably compared with several algorithms, with regards to both solution quality and diversity.展开更多
A reference point based multi-objective optimization using a combination between trust region (TR) algorithm and particle swarm optimization (PSO) to solve the multi-objective environmental/economic dispatch (EED) pro...A reference point based multi-objective optimization using a combination between trust region (TR) algorithm and particle swarm optimization (PSO) to solve the multi-objective environmental/economic dispatch (EED) problem is presented in this paper. The EED problem is handled by Reference Point Interactive Approach. One of the main advantages of the proposed approach is integrating the merits of both TR and PSO, where TR has provided the initial set (close to the Pareto set as possible and the reference point of the decision maker) followed by PSO to improve the quality of the solutions and get all the points on the Pareto frontier. The performance of the proposed algorithm is tested on standard IEEE 30-bus 6-genrator test system and is compared with conventional methods. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto-optimal non-dominated solutions in one single run. The comparison with the classical methods demonstrates the superiority of the proposed approach and confirms its potential to solve the multi-objective EED problem.展开更多
[Objective] The aim was to investigate the application effect of swine manure-straw returning and to determine the best mode. [Method] A field experiment under rice and wheat rotation with different swine manure-straw...[Objective] The aim was to investigate the application effect of swine manure-straw returning and to determine the best mode. [Method] A field experiment under rice and wheat rotation with different swine manure-straw treatments was con- ducted to study the growth characters and output of rice and wheat, calculate the economic benefit and carbon dioxide emission reduction, and analyze the best mode of swine manure applying-straw returning. [Result] The swine manure-straw returning was conducive to the growth of crop, the highest outputs of rice and wheat were on the treatment of "30% swine manure and 20% straw and 50% chemical fertiliz- er", they were 7 874.57 and 6 427.00 kg/hm^2, and saved cost about 5 146.35 Yuan/hm^2, increased input 5 312.56 and 3 931.93 Yuan/hm^2, the greenhouse gas e- mission reduction was 1.30 t/hm^2 (calculated according to carbon dioxide on a dry basis). [Conclusion] The treatment of "30% swine manure and 20% straw and 50% chemical fertilizer" was the best mode of swine manure-straw returning.展开更多
Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electri...Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.展开更多
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid...Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid falling in local optimal,particularly when handling nonlinear and complex systems.Metaheuristics have recently received considerable attention due to their enhanced capacity to prevent local optimal solutions in addressing all the optimization problems as a black box.Therefore,this paper focuses on the design of an improved sand cat optimization algorithm based CEED(ISCOA-CEED)technique.The ISCOA-CEED technique majorly concen-trates on reducing fuel costs and the emission of generation units.Moreover,the presented ISCOA-CEED technique transforms the equality constraints of the CEED issue into inequality constraints.Besides,the improved sand cat optimization algorithm(ISCOA)is derived from the integration of tra-ditional SCOA with the Levy Flight(LF)concept.At last,the ISCOA-CEED technique is applied to solve a series of 6 and 11 generators in the CEED issue.The experimental validation of the ISCOA-CEED technique ensured the enhanced performance of the presented ISCOA-CEED technique over other recent approaches.展开更多
The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,the...The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,thereby meeting the lack of system equality and inequality constraints.Economic and emissions dispatching has become a primary and significant concern in power system networks.Consequences of using non-renewable fuels as input to exhaust power systems with toxic gas emissions and depleted resources for future generations.The optimal power allocation to generators serves as a solution to this problem.Emission dispatch reduces emissions while ignoring economic considerations.A collective strategy known as Combined Economic and Emission Dispatch is utilized to resolve the above-mentioned problems and investigate the trade-off relationship between fuel cost and emissions.Consequently,this work manages the Substantial Augmented Transformative Algorithm(SATA)to take care of the Combined Economic Emission Dispatch Problem(CEEDP)of warm units while fulfilling imperatives,for example,confines on generator limit,diminish the fuel cost,lessen the emission and decrease the force misfortune.SATA is a stochastic streamlining process that relies upon the development and knowledge of swarms.The goal is to minimize the total fuel cost of fossil-based thermal power generation units that generate and cause environmental pollution.The algorithm searches for solutions in the search space from the smallest to the largest in the case of forwarding search.The simulation of the proposed system is developed using MATLAB Simulink software.Simulation results show the effectiveness and practicability of this method in terms of economic and emission dispatching issues.The performance of the proposed system is compared with existing Artificial Bee Colony-Particle Swarm Optimization(ABC-PSO),Simulated Annealing(SA),and Differential Evolution(DE)methods.The fuel cost and gas emission of the proposed system are 128904$/hr and 138094.4652$/hr.展开更多
The optimizationfield has grown tremendously,and new optimization techniques are developed based on statistics and evolutionary procedures.There-fore,it is necessary to identify a suitable optimization technique for a...The optimizationfield has grown tremendously,and new optimization techniques are developed based on statistics and evolutionary procedures.There-fore,it is necessary to identify a suitable optimization technique for a particular application.In this work,Black Widow Optimization(BWO)algorithm is intro-duced to minimize the cost functions in order to optimize the Multi-Area Economic Dispatch(MAED).The BWO is implemented for two different-scale test systems,comprising 16 and 40 units with three and four areas.The performance of BWO is compared with the available optimization techniques in the literature to demonstrate the strategy’s efficacy.Results show that the optimized cost for four areas with 16 units is found to be 7336.76$/h,whereas it is 121,589$/h for four areas with 40 units using BWO.It is also noted that optimization algo-rithms other than BWO require higher cost value.The best-optimized solution for emission is achieved at 9.2784e+06 tones/h,and it is observed that there is a considerable difference between the worst and the best values.Also,the suggested technique is implemented for large-scale test systems successfully with high precision,and rapid convergence occurs in MAED.展开更多
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m...Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.展开更多
Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbo...Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.展开更多
This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and cl...This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and climate change experiences (personal realm) on the other. We combine communication theory and behavioral models and using a sample of USA individuals (N = 7225) based on the American Trends Panel to predict variations in pro-environmental behavior. We show that social networks rather than information are more effective in predicting pro-environmental behavior. Moreover, a pro-environmental lifestyle as well as climate change experiences at the community level increase the likelihood for pro-environmental participation. However, affordances related to socioeconomic variations generate variations to pro-environmental civic participation. We conclude that in order to capture the depth of pro-environmental civic participation, it is necessary to theoretically and empirically bridge between private and public expressions of pro-environmental awareness.展开更多
文摘A country’s ability to create complex goods and diversify its lines of products is essential for addressing all types of vulnerabilities.Quantifying a country’s vulnerability to extreme climatic events,such as droughts,superstorms,and other natural disasters,and its capacity for successful adaption,is an essential global need that has been ignored.This study examines the role of economic fitness(EF)in addressing climate change risk ex‐posure in BRICS countries in the context of the environmental Kuznets curve using panel data from 1995 to 2015.Panel threshold methodology is employed to ascertain the nonlinear relationship between EF and climate change risk exposure(i.e.,Notre Dame Global Adaptation Initiative Country Index(ND-GAIN)).In addition,empirical associations were estimated using panel-corrected standard errors,Driscoll-Kraay standard errors,and feasible generalized least squares estimation techniques.These findings demonstrated an inverted N shaped link between EF and ND-GAIN.Moreover,even after controlling for significant ND-GAIN influencing variables such as gross domestic product per capita,financial development,and urbanization,our robustness checks revealed significant and consistent findings.
基金supported by the National Natural Science Foundation of China(62103203)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241A-1-1-ZN).
文摘This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
文摘The European Union(EU) and Organisation for Economic Co-operation and Development(OECD) aim to develop long-term policies for their respective member countries. Having observed increasing dangers to the environment posed by rising economic growth, they are seeking pathways to enable policy action on economic growth and environmental sustainability. Given the facts in theoretical and empirical studies, this study assessed the validity of the decoupling hypothesis by investigating asymmetricity in the relationship between environmental sustainability and economic growth in nine Eastern European countries from 1998 to 2017 using the cross-section augmented Dickey-Fuller(CADF) unit root, panel corrected standard error(PCSE), common correlated effect mean group(CCEMG), and Dumitrescu Hurlin causality approaches. Both population growth and drinking water are used as controlled variables. The outcomes establish strong cointegration among all the variables of interest. According to the results of CCEMG test, economic growth exerts short-term environmental degradation but has long-term environmental benefits in Eastern Europe;and population growth and drinking water exert a positive effect on environmental sustainability in both the short-and long-run. The results of Dumitrescu Hurlin causality test indicate that environmental sustainability is unidirectionally affected by economic growth. Based on these outcomes, we suggest the following policies:(1) the EU and OECD should implement member-targeted policies on economic growth and fossil-fuel use towards regulating industrial pollution, water use, and population control;and(2) the EU and OECD member countries should invest in environmental technologies through green research and development(R&D) to transform their dirty industrial processes and ensure productive energy use.
基金funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291.
文摘The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described.
文摘Globally,economies have become complex and new technologies have transformed and facilitated the modernization of economies.In the previous literature,economic complexity approach has become one of the popular tools in the development and innovation studies of economic geography.Researchers have found that green technology and eco-innovation approaches should be used to decisively reduce the effects of carbon emissions on the environment.However,debates about the impact of economic complexity on environment remain unsettled since some emerging production technologies have far-reaching pollution effects.This study explored the impacts of economic complexity on environmental sustainability in Turkey using the novel Fourier-based approaches,namely:Fourier Augmented Dickey-Fuller(FADF)and Fourier Autoregressive-Distributed Lag(FARDL)models.The Fourier-based approaches indicated that all variables(economic complexity index(ECI),GDP,energy consumption,and CO_(2)emission(CO_(2)E))are cointegrated in the long run.Additionally,the FARDL model implied that(i)in the long run,the effect of ECI(as a proxy for economic complexity),GDP(as a proxy for economic growth),and energy consumption on CO_(2)E(as a proxy for environmental quality)are important;(ii)economic complexity decreases environmental degradation in Turkey;and(iii)economic growth and energy consumption negatively affect environmental quality.The results also showed that economic complexity could be used as a policy tool to tackle environmental degradation.The findings also revealed that the fossil fuelbased economy will continue to expand and undermine Turkey’s efforts to meet its net zero emission target by 2053.Therefore,policy-makers should take actions and establish diversified economic,environmental,and energy strategies.For policy insights,the Turkish governments can use the combination of tax exemptions and technical support systems to support knowledge creation and the diffusion of environmentally friendly technologies The governments can also impose strict environmental regulations on the knowledge development phases.
基金supported by the Ministry of Education of Humanities and Social Science Project(21YJC630009)the National Natural Science Foundation of China(No.72104116).
文摘To capitalize on the synergies between the Econometrics course and the Environmental Economics major,this paper aims to enhance students’ability to conduct empirical analysis and practical application using econometric models.It also seeks to promote collaborative teaching through case studies and model research.The primary focus is on the hot research issues within the field of environmental economics,utilizing the econometric model as a vehicle for instruction.To achieve this,the paper proposes the development of a comprehensive case library specific to environmental economics.This resource will serve to optimize the case teaching approach,incorporating the use of econometric software,and fostering interactive teaching models between educators and students.By implementing these strategies,the paper outlines a path and mode for collaborative teaching that effectively bridges the gap between econometrics and environmental economics.
基金partially supported by the National Natural Science Foundation of China(61773192,61773246,61603169,61803192)Shandong Province Higher Educational Science and Technology Program(J17KZ005)+1 种基金Special Fund Plan for Local Science and Technology Development Lead by Central AuthorityMajor Basic Research Projects in Shandong(ZR2018ZB0419)
文摘In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e., total fuel cost and emission. In the proposed algorithm, each solution is represented by a chemical molecule. A novel encoding mechanism for solving the multi-area environmental/economic dispatch optimization problems is designed to dynamically enhance the performance of the proposed algorithm. Then, an ensemble of effective neighborhood approaches is developed, and a selfadaptive neighborhood structure selection mechanism is also embedded in PCRO to increase the search ability while maintaining population diversity. In addition, a grid-based crowding distance strategy is introduced, which can obviously enable the algorithm to easily converge near the Pareto front. Furthermore,a kinetic-energy-based search procedure is developed to enhance the global search ability. Finally, the proposed algorithm is tested on sets of the instances that are generated based on realistic production. Through the analysis of experimental results, the highly effective performance of the proposed PCRO algorithm is favorably compared with several algorithms, with regards to both solution quality and diversity.
文摘A reference point based multi-objective optimization using a combination between trust region (TR) algorithm and particle swarm optimization (PSO) to solve the multi-objective environmental/economic dispatch (EED) problem is presented in this paper. The EED problem is handled by Reference Point Interactive Approach. One of the main advantages of the proposed approach is integrating the merits of both TR and PSO, where TR has provided the initial set (close to the Pareto set as possible and the reference point of the decision maker) followed by PSO to improve the quality of the solutions and get all the points on the Pareto frontier. The performance of the proposed algorithm is tested on standard IEEE 30-bus 6-genrator test system and is compared with conventional methods. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto-optimal non-dominated solutions in one single run. The comparison with the classical methods demonstrates the superiority of the proposed approach and confirms its potential to solve the multi-objective EED problem.
基金Supported by Science and Technology Support Program of Sichuan Province(2014NZ0044)~~
文摘[Objective] The aim was to investigate the application effect of swine manure-straw returning and to determine the best mode. [Method] A field experiment under rice and wheat rotation with different swine manure-straw treatments was con- ducted to study the growth characters and output of rice and wheat, calculate the economic benefit and carbon dioxide emission reduction, and analyze the best mode of swine manure applying-straw returning. [Result] The swine manure-straw returning was conducive to the growth of crop, the highest outputs of rice and wheat were on the treatment of "30% swine manure and 20% straw and 50% chemical fertiliz- er", they were 7 874.57 and 6 427.00 kg/hm^2, and saved cost about 5 146.35 Yuan/hm^2, increased input 5 312.56 and 3 931.93 Yuan/hm^2, the greenhouse gas e- mission reduction was 1.30 t/hm^2 (calculated according to carbon dioxide on a dry basis). [Conclusion] The treatment of "30% swine manure and 20% straw and 50% chemical fertilizer" was the best mode of swine manure-straw returning.
基金National Natural Science Foundation of China,Grant/Award Number:51677059。
文摘Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444)The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR65.
文摘Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid falling in local optimal,particularly when handling nonlinear and complex systems.Metaheuristics have recently received considerable attention due to their enhanced capacity to prevent local optimal solutions in addressing all the optimization problems as a black box.Therefore,this paper focuses on the design of an improved sand cat optimization algorithm based CEED(ISCOA-CEED)technique.The ISCOA-CEED technique majorly concen-trates on reducing fuel costs and the emission of generation units.Moreover,the presented ISCOA-CEED technique transforms the equality constraints of the CEED issue into inequality constraints.Besides,the improved sand cat optimization algorithm(ISCOA)is derived from the integration of tra-ditional SCOA with the Levy Flight(LF)concept.At last,the ISCOA-CEED technique is applied to solve a series of 6 and 11 generators in the CEED issue.The experimental validation of the ISCOA-CEED technique ensured the enhanced performance of the presented ISCOA-CEED technique over other recent approaches.
文摘The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,thereby meeting the lack of system equality and inequality constraints.Economic and emissions dispatching has become a primary and significant concern in power system networks.Consequences of using non-renewable fuels as input to exhaust power systems with toxic gas emissions and depleted resources for future generations.The optimal power allocation to generators serves as a solution to this problem.Emission dispatch reduces emissions while ignoring economic considerations.A collective strategy known as Combined Economic and Emission Dispatch is utilized to resolve the above-mentioned problems and investigate the trade-off relationship between fuel cost and emissions.Consequently,this work manages the Substantial Augmented Transformative Algorithm(SATA)to take care of the Combined Economic Emission Dispatch Problem(CEEDP)of warm units while fulfilling imperatives,for example,confines on generator limit,diminish the fuel cost,lessen the emission and decrease the force misfortune.SATA is a stochastic streamlining process that relies upon the development and knowledge of swarms.The goal is to minimize the total fuel cost of fossil-based thermal power generation units that generate and cause environmental pollution.The algorithm searches for solutions in the search space from the smallest to the largest in the case of forwarding search.The simulation of the proposed system is developed using MATLAB Simulink software.Simulation results show the effectiveness and practicability of this method in terms of economic and emission dispatching issues.The performance of the proposed system is compared with existing Artificial Bee Colony-Particle Swarm Optimization(ABC-PSO),Simulated Annealing(SA),and Differential Evolution(DE)methods.The fuel cost and gas emission of the proposed system are 128904$/hr and 138094.4652$/hr.
文摘The optimizationfield has grown tremendously,and new optimization techniques are developed based on statistics and evolutionary procedures.There-fore,it is necessary to identify a suitable optimization technique for a particular application.In this work,Black Widow Optimization(BWO)algorithm is intro-duced to minimize the cost functions in order to optimize the Multi-Area Economic Dispatch(MAED).The BWO is implemented for two different-scale test systems,comprising 16 and 40 units with three and four areas.The performance of BWO is compared with the available optimization techniques in the literature to demonstrate the strategy’s efficacy.Results show that the optimized cost for four areas with 16 units is found to be 7336.76$/h,whereas it is 121,589$/h for four areas with 40 units using BWO.It is also noted that optimization algo-rithms other than BWO require higher cost value.The best-optimized solution for emission is achieved at 9.2784e+06 tones/h,and it is observed that there is a considerable difference between the worst and the best values.Also,the suggested technique is implemented for large-scale test systems successfully with high precision,and rapid convergence occurs in MAED.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(19ZD2GA003)“Key Technologies and Demonstrative Applications of Market Consumption and Dispatching Control of Photothermal-Photovoltaic-Wind PowerNew Energy Base(Multi Energy System Optimization)”.
文摘Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(SGSDJY00GPJS2100135).
文摘Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.
文摘This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and climate change experiences (personal realm) on the other. We combine communication theory and behavioral models and using a sample of USA individuals (N = 7225) based on the American Trends Panel to predict variations in pro-environmental behavior. We show that social networks rather than information are more effective in predicting pro-environmental behavior. Moreover, a pro-environmental lifestyle as well as climate change experiences at the community level increase the likelihood for pro-environmental participation. However, affordances related to socioeconomic variations generate variations to pro-environmental civic participation. We conclude that in order to capture the depth of pro-environmental civic participation, it is necessary to theoretically and empirically bridge between private and public expressions of pro-environmental awareness.